Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
2D SPECTRAL SUBTRACTION FOR NOISE SUPPRESSION IN FINGERPRINT IMAGES
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Human fingerprints are rich in details called the minutiae, which can be used as identification marks for fingerprint verification. To get the details, the fingerprint capturing techniques are to be improved. Since when we the fingerprint is captured, the noise from outside adds to it. The goal of this thesis is to remove the noise present in the fingerprint image. To achieve a good quality fingerprint image, this noise has to be removed or suppressed and here it is done by using an algorithm or technique called ’Spectral Subtraction’, where the algorithm is based on subtraction of estimated noise spectrum from noisy signal spectrum. The performance of the algorithm is assessed by comparing the original fingerprint image and image obtained after spectral subtraction several parameters like PSNR, SSIM and also for different fingerprints on the database. Finally, performance matching was done using NIST matching software, and the obtained results were presented in the form of Receiver Operating Characteristics (ROC)graphs, using MATLAB, and the experimental results were presented.

sted, utgiver, år, opplag, sider
2017. , s. 56
Emneord [en]
Spectral Subtraction, Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM).
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-13848OAI: oai:DiVA.org:bth-13848DiVA, id: diva2:1069953
Eksternt samarbeid
Sällberg Technologies e.U.
Fag / kurs
ET2566 Master's Thesis (120 credits) in Electrical Engineering with emphasis on Signal processing
Utdanningsprogram
ETASX Master of Science Programme in Electrical Engineering with emphasis on Signal Processing
Presentation
2016-09-30, J3506, Blekinge Institute of Technology, Karlskrona, 14:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2017-02-01 Laget: 2017-02-01bibliografisk kontrollert

Open Access i DiVA

fulltext(1529 kB)447 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1529 kBChecksum SHA-512
d0d815cedd2d1d1f74274be36f00dd74ff534f4118b6ad34ddbcc89842adb0114132fe5b99736dce35d565625eb89f2e405bf9bad9e19a00375b680e0f6c6de8
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Dandu, Sai Venkata Satya Siva KumarKadimisetti, Sujit
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 447 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 416 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf