Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting burglars' risk exposure and level of pre-crime preparation using crime scene data
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-9316-4842
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-8929-7220
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för industriell ekonomi.
Polisen, SWE.
2018 (engelsk)Inngår i: Intelligent Data Analysis, ISSN 1088-467X, Vol. 22, nr 1, s. 167-190, artikkel-id IDA 322-3210Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Objectives: The present study aims to extend current research on how offenders’ modus operandi (MO) can be used in crime linkage, by investigating the possibility to automatically estimate offenders’ risk exposure and level of pre-crime preparation for residential burglaries. Such estimations can assist law enforcement agencies when linking crimes into series and thus provide a more comprehensive understanding of offenders and targets, based on the combined knowledge and evidence collected from different crime scenes. Methods: Two criminal profilers manually rated offenders’ risk exposure and level of pre-crime preparation for 50 burglaries each. In an experiment we then analyzed to what extent 16 machine-learning algorithms could generalize both offenders’ risk exposure and preparation scores from the criminal profilers’ ratings onto 15,598 residential burglaries. All included burglaries contain structured and feature-rich crime descriptions which learning algorithms can use to generalize offenders’ risk and preparation scores from.Results: Two models created by Naïve Bayes-based algorithms showed best performance with an AUC of 0.79 and 0.77 for estimating offenders' risk and preparation scores respectively. These algorithms were significantly better than most, but not all, algorithms. Both scores showed promising distinctiveness between linked series, as well as consistency for crimes within series compared to randomly sampled crimes.Conclusions: Estimating offenders' risk exposure and pre-crime preparation  can complement traditional MO characteristics in the crime linkage process. The estimations are also indicative to function for cross-category crimes that otherwise lack comparable MO. Future work could focus on increasing the number of manually rated offenses as well as fine-tuning the Naïve Bayes algorithm to increase its estimation performance.

sted, utgiver, år, opplag, sider
IOS Press, 2018. Vol. 22, nr 1, s. 167-190, artikkel-id IDA 322-3210
Emneord [en]
Predictive models, Classification, Crime linkage, Offender behavior, Serial crime, Residential burglary
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-13935DOI: 10.3233/IDA-163220ISI: 000426790500009OAI: oai:DiVA.org:bth-13935DiVA, id: diva2:1076050
Tilgjengelig fra: 2017-02-21 Laget: 2017-02-21 Sist oppdatert: 2018-04-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Boldt, MartinBorg, AntonSvensson, Martin

Søk i DiVA

Av forfatter/redaktør
Boldt, MartinBorg, AntonSvensson, Martin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 690 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf