Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigating Metrics that are Good Predictors of Human Oracle Costs An Experiment
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för programvaruteknik.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Context. Human oracle cost, the cost associated in estimating the correctness of the output for the given test inputs is manually evaluated by humans and this cost is significant and is a concern in the software test data generation field. This study has been designed in the context to assess metrics that might predict human oracle cost.

Objectives. The major objective of this study is to address the human oracle cost, for this the study identifies the metrics that are good predictors of human oracle cost and can further help to solve the oracle problem. In this process, the identified suitable metrics from the literature are applied on the test input, to see if they can help in predicting the correctness of the output for the given test input. Methods. Initially a literature review was conducted to find some of the metrics that are relevant to the test data. Besides finding the aforementioned metrics, our literature review also tries to find out some possible code metrics that can be ap- plied on test data. Before conducting the actual experiment two pilot experiments were conducted. To accomplish our research objectives an experiment is conducted in the BTH university with master students as sample population. Further group interviews were conducted to check if the participants perceive any new metrics that might impact the correctness of the output. The data obtained from the experiment and the interviews is analyzed using linear regression model in SPSS suite. Further to analyze the accuracy vs metric data, linear discriminant model using SPSS pro- gram suite was used.

Results.Our literature review resulted in 4 metrics that are suitable to our study. As our test input is HTML we took HTML depth, size, compression size, number of tags as our metrics. Also, from the group interviews another 4 metrics are drawn namely number of lines of code and number of <div>, anchor <a> and paragraph <p> tags as each individual metric. The linear regression model which analyses time vs metric data, shows significant results, but with multicollinearity effecting the result, there was no variance among the considered metrics. So, the results of our study are proposed by adjusting the multicollinearity. Besides, the above analysis, linear discriminant model which analyses accuracy vs metric data was conducted to predict the metrics that influences accuracy. The results of our study show that metrics positively correlate with time and accuracy.

Conclusions. From the time vs metric data, when multicollinearity is adjusted by applying step-wise regression reduction technique, the program size, compression size and <div> tag are influencing the time taken by sample population. From accuracy vs metrics data number of <div> tags and number of lines of code are influencing the accuracy of the sample population. 

sted, utgiver, år, opplag, sider
2017. , s. 120
Emneord [en]
Test data generation, comprehensibility of test data, software test data metrics, software code metrics, multiple regression analysis, linear discriminant analysis.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-14080OAI: oai:DiVA.org:bth-14080DiVA, id: diva2:1086742
Fag / kurs
PA2534 Master's Thesis (120 credits) in Software Engineering
Utdanningsprogram
PAAXA Master of Science Programme in Software Engineering
Veileder
Examiner
Tilgjengelig fra: 2017-04-04 Laget: 2017-04-04 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(6420 kB)255 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 6420 kBChecksum SHA-512
84209fd6f2f573f1e498c682cddd707adb1067bdb0067a57e069542495fa41c0a2c90c726142cef736fa97af5d0fdb21917ddf0461095b07060d3c9c286e6eb5
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Kartheek arun sai ram, chillaKavya, Chelluboina
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 255 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 379 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf