Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy-aware Auto-scaling Algorithms for Cassandra Virtual Data Centers
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-3118-5058
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2017 (engelsk)Inngår i: Cluster Computing, ISSN 1386-7857, E-ISSN 1573-7543, Vol. 20, nr 3, s. 2065-2082Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Apache Cassandra is an highly scalable and available NoSql datastore, largely used by enterprises of each size and for application areas that range from entertainment to big data analytics. Managed Cassandra service providers are emerging to hide the complexity of the installation, fine tuning and operation of Cassandra Virtual Data Centers (VDCs). This paper address the problem of energy efficient auto-scaling of Cassandra VDC in managed Cassandra data centers. We propose three energy-aware autoscaling algorithms: \texttt{Opt}, \texttt{LocalOpt} and \texttt{LocalOpt-H}. The first provides the optimal scaling decision orchestrating horizontal and vertical scaling and optimal placement. The other two are heuristics and provide sub-optimal solutions. Both orchestrate horizontal scaling and optimal placement. \texttt{LocalOpt} consider also vertical scaling. In this paper: we provide an analysis of the computational complexity of the optimal and of the heuristic auto-scaling algorithms; we discuss the issues in auto-scaling Cassandra VDC and we provide best practice for using auto-scaling algorithms; we evaluate the performance of the proposed algorithms under programmed SLA variation, surge of throughput (unexpected) and failures of physical nodes. We also compare the performance of energy-aware auto-scaling algorithms with the performance of two energy-blind auto-scaling algorithms, namely \texttt{BestFit} and \texttt{BestFit-H}. The main findings are: VDC allocation aiming at reducing the energy consumption or resource usage in general can heavily reduce the reliability of Cassandra in term of the consistency level offered. Horizontal scaling of Cassandra is very slow and make hard to manage surge of throughput. Vertical scaling is a valid alternative, but it is not supported by all the cloud infrastructures.

sted, utgiver, år, opplag, sider
Springer-Verlag New York, 2017. Vol. 20, nr 3, s. 2065-2082
Emneord [en]
Cloud Computing, Big Data, Autonomic Computing, Cassandra
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-14152DOI: 10.1007/s10586-017-0912-6ISI: 000407928800014OAI: oai:DiVA.org:bth-14152DiVA, id: diva2:1093497
Prosjekter
BigData@BTH
Forskningsfinansiär
Knowledge Foundation, 20140032Tilgjengelig fra: 2017-05-07 Laget: 2017-05-07 Sist oppdatert: 2018-05-23bibliografisk kontrollert

Open Access i DiVA

fulltext(1377 kB)155 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1377 kBChecksum SHA-512
e6216002fd96a6c45890a1f57e6cb025c05236452176392be826413b4bd6a68a71a8139fcbb01c1f0ab4214366882e64dda48274274e2ceda1df88d44b27ba39
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstArticle full text

Søk i DiVA

Av forfatter/redaktør
Casalicchio, EmilianoLundberg, LarsShirinbab, Sogand
Av organisasjonen
I samme tidsskrift
Cluster Computing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 155 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 242 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf