Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computer-Vision Based Retinal Image Analysis for Diagnosis and Treatment
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Context- Vision is one of the five elementary physiologial senses. Vision is enabled via the eye, a very delicate sense organ which is highly susceptible to damage which results in loss of vision. The damage comes in the form of injuries or diseases such as diabetic retinopathy and glaucoma. While it is not possible to predict accidents, predicting the onset of disease in the earliest stages is highly attainable. Owing to the leaps in imaging technology,it is also possible to provide near instant diagnosis by utilizing computer vision and image processing capabilities.

Objectives- In this thesis, an algorithm is proposed and implemented to classify images of the retina into healthy or two classes of unhealthy images, i.e, diabetic retinopathy, and glaucoma thus aiding diagnosis. Additionally the algorithm is studied to investigate which image transformation is more feasible in implementation within the scope of this algorithm and which region of retina helps in accurate diagnosis.

Methods- An experiment has been designed to facilitate the development of the algorithm. The algorithm is developed in such a way that it can accept all the values of a dataset concurrently and perform both the domain transforms independent of each other.

Results- It is found that blood vessels help best in predicting disease associations, with the classifier giving an accuracy of 0.93 and a Cohen’s kappa score of 0.90. Frequency transformed images also presented a accuracy in prediction with 0.93 on blood vessel images and 0.87 on optic disk images.

Conclusions- It is concluded that blood vessels from the fundus images after frequency transformation gives the highest accuracy for the algorithm developed when the algorithm is using a bag of visual words and an image category classifier model.

Keywords-Image Processing, Machine Learning, Medical Imaging

sted, utgiver, år, opplag, sider
2017. , s. 36
Emneord [en]
Retinal Image Processing, Disease Classification, Machine Learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-14979OAI: oai:DiVA.org:bth-14979DiVA, id: diva2:1130071
Fag / kurs
DV2566 Master's Thesis (120 credits) in Computer Science
Utdanningsprogram
DVAXA Master of Science Programme in Computer Science
Veileder
Examiner
Tilgjengelig fra: 2017-08-09 Laget: 2017-08-08 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(2924 kB)386 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2924 kBChecksum SHA-512
43802b32f73452deb4bca50b66d0714be0d977f75139823274382ea98ba4ec4d88f1aec8da129e79d319d7068254566eaa77dcf87b20315ac4399405574935f3
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 386 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 982 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf