Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computer-Vision Based Retinal Image Analysis for Diagnosis and Treatment
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2017 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Context- Vision is one of the five elementary physiologial senses. Vision is enabled via the eye, a very delicate sense organ which is highly susceptible to damage which results in loss of vision. The damage comes in the form of injuries or diseases such as diabetic retinopathy and glaucoma. While it is not possible to predict accidents, predicting the onset of disease in the earliest stages is highly attainable. Owing to the leaps in imaging technology,it is also possible to provide near instant diagnosis by utilizing computer vision and image processing capabilities.

Objectives- In this thesis, an algorithm is proposed and implemented to classify images of the retina into healthy or two classes of unhealthy images, i.e, diabetic retinopathy, and glaucoma thus aiding diagnosis. Additionally the algorithm is studied to investigate which image transformation is more feasible in implementation within the scope of this algorithm and which region of retina helps in accurate diagnosis.

Methods- An experiment has been designed to facilitate the development of the algorithm. The algorithm is developed in such a way that it can accept all the values of a dataset concurrently and perform both the domain transforms independent of each other.

Results- It is found that blood vessels help best in predicting disease associations, with the classifier giving an accuracy of 0.93 and a Cohen’s kappa score of 0.90. Frequency transformed images also presented a accuracy in prediction with 0.93 on blood vessel images and 0.87 on optic disk images.

Conclusions- It is concluded that blood vessels from the fundus images after frequency transformation gives the highest accuracy for the algorithm developed when the algorithm is using a bag of visual words and an image category classifier model.

Keywords-Image Processing, Machine Learning, Medical Imaging

Ort, förlag, år, upplaga, sidor
2017. , s. 36
Nyckelord [en]
Retinal Image Processing, Disease Classification, Machine Learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-14979OAI: oai:DiVA.org:bth-14979DiVA, id: diva2:1130071
Ämne / kurs
DV2566 Masterarbete i datavetenskap
Utbildningsprogram
DVAXA Masterprogram i Datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2017-08-09 Skapad: 2017-08-08 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

fulltext(2924 kB)386 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 2924 kBChecksumma SHA-512
43802b32f73452deb4bca50b66d0714be0d977f75139823274382ea98ba4ec4d88f1aec8da129e79d319d7068254566eaa77dcf87b20315ac4399405574935f3
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datalogi och datorsystemteknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 386 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 982 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf