Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för hälsa.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik. Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för programvaruteknik.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för hälsa.ORCID-id: 0000-0003-4312-2246
Vise andre og tillknytning
2017 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, nr 6, artikkel-id e0179804Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background Dementia is a complex disorder characterized by poor outcomes for the patients and high costs of care. After decades of research little is known about its mechanisms. Having prognostic estimates about dementia can help researchers, patients and public entities in dealing with this disorder. Thus, health data, machine learning and microsimulation techniques could be employed in developing prognostic estimates for dementia. Objective The goal of this paper is to present evidence on the state of the art of studies investigating and the prognosis of dementia using machine learning and microsimulation techniques. Method To achieve our goal we carried out a systematic literature review, in which three large databases -Pubmed, Socups and Web of Science were searched to select studies that employed machine learning or microsimulation techniques for the prognosis of dementia. A single backward snowballing was done to identify further studies. A quality checklist was also employed to assess the quality of the evidence presented by the selected studies, and low quality studies were removed. Finally, data from the final set of studies were extracted in summary tables. Results In total 37 papers were included. The data summary results showed that the current research is focused on the investigation of the patients with mild cognitive impairment that will evolve to Alzheimer's disease, using machine learning techniques. Microsimulation studies were concerned with cost estimation and had a populational focus. Neuroimaging was the most commonly used variable. Conclusions Prediction of conversion from MCI to AD is the dominant theme in the selected studies. Most studies used ML techniques on Neuroimaging data. Only a few data sources have been recruited by most studies and the ADNI database is the one most commonly used. Only two studies have investigated the prediction of epidemiological aspects of Dementia using either ML or MS techniques. Finally, care should be taken when interpreting the reported accuracy of ML techniques, given studies' different contexts. © 2017 Dallora et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

sted, utgiver, år, opplag, sider
Public Library of Science , 2017. Vol. 12, nr 6, artikkel-id e0179804
Emneord [en]
Alzheimer disease, analytic method, artificial neural network, Bayesian Network, classification algorithm, comorbidity, DecisionTrees, disease course, human, k nearest neighbor, machine learning, microsimulation technique, mild cognitive impairment, population research, quality control, Review, support vector machine, systematic review
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-15017DOI: 10.1371/journal.pone.0179804ISI: 000404608300049Scopus ID: 2-s2.0-85021683292OAI: oai:DiVA.org:bth-15017DiVA, id: diva2:1135391
Merknad

Open access

Tilgjengelig fra: 2017-08-23 Laget: 2017-08-23 Sist oppdatert: 2018-01-16

Open Access i DiVA

fulltext(2522 kB)289 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2522 kBChecksum SHA-512
5fa76c676ccb2642795a8799945cfdb1bd67e35567c13d89b8db0b235aabeb837c3c8e5886fac7b1a4d41564516d223085eafac0febcaa8141527c9f7ca86f87
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopushttp://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179804

Personposter BETA

Mendes, EmiliaBerglund, JohanAnderberg, Peter

Søk i DiVA

Av forfatter/redaktør
Moraes, Ana Luiza DalloraEivazzadeh, ShahryarMendes, EmiliaBerglund, JohanAnderberg, Peter
Av organisasjonen
I samme tidsskrift
PLoS ONE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 289 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 474 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf