Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Operational Demand Forecasting In District Heating Systems Using Ensembles Of Online Machine Learning Algorithms
NODA, SWE.
NODA, SWE.
EnergyVille, BEL.
EnergyVille, BEL.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: 15TH INTERNATIONAL SYMPOSIUM ON DISTRICT HEATING AND COOLING (DHC15-2016) / [ed] Ulseth, R, ELSEVIER SCIENCE BV , 2017, s. 208-216Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Heat demand forecasting is in one form or another an integrated part of most optimisation solutions for district heating and cooling (DHC). Since DHC systems are demand driven, the ability to forecast this behaviour becomes an important part of most overall energy efficiency efforts. This paper presents the current status and results from extensive work in the development, implementation and operational service of online machine learning algorithms for demand forecasting. Recent results and experiences are compared to results predicted by previous work done by the authors. The prior work, based mainly on certain decision tree based regression algorithms, is expanded to include other forms of decision tree solutions as well as neural network based approaches. These algorithms are analysed both individually and combined in an ensemble solution. Furthermore, the paper also describes the practical implementation and commissioning of the system in two different operational settings where the data streams are analysed online in real-time. It is shown that the results are in line with expectations based on prior work, and that the demand predictions have a robust behaviour within acceptable error margins. Applications of such predictions in relation to intelligent network controllers for district heating are explored and the initial results of such systems are discussed. (C) 2017 The Authors. Published by Elsevier Ltd.

Ort, förlag, år, upplaga, sidor
ELSEVIER SCIENCE BV , 2017. s. 208-216
Serie
Energy Procedia, ISSN 1876-6102 ; 116
Nyckelord [en]
district heating and cooling networks, heat load forecast, algorithms, machine learning
Nationell ämneskategori
Datorteknik
Identifikatorer
URN: urn:nbn:se:bth-15085DOI: 10.1016/j.egypro.2017.05.068ISI: 000406743000019OAI: oai:DiVA.org:bth-15085DiVA, id: diva2:1137318
Konferens
15th International Symposium on District Heating and Cooling (DHC), Seoul
Tillgänglig från: 2017-08-31 Skapad: 2017-08-31 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

fulltext(802 kB)279 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 802 kBChecksumma SHA-512
d8b6e0f3fb6566ed77f3b320f1c7b93c73fa32830a488482c0f4952b849f0b7005d5ec9deaf4d9df5dca94e0dfd74d1bdaf198602d6a3c61f93e1cdf88d553fe
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttp://www.sciencedirect.com/science/article/pii/S1876610217322750?via%3Dihub

Personposter BETA

Lavesson, Niklas

Sök vidare i DiVA

Av författaren/redaktören
Lavesson, Niklas
Av organisationen
Institutionen för datalogi och datorsystemteknik
Datorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 279 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 391 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf