Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Novel Shoeprint Enhancement method for Forensic Evidence Using Sparse Representation method.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Shoeprints are often recovered at crime scenes and are the most abundant form of evidence at a crime scene, and in some cases, it is proved to be as accurate as fingerprints. The basis for shoeprint impression evidence is determining the source of a shoeprint impression recovered from a crime scene. This shoeprint evidence collected are often noisy and unclear. To obtain a clear image, the shoeprint evidence should be enhanced by de-noising and improving the quality of the picture.

In the thesis, we introduced a novel shoeprint enhancement algorithm based on sparse representation for obtaining the complete dictionary from a set of shoeprint patches which allows us to represent them as a sparse linear combination of dictionary atoms. In the proposed algorithm, we first pre-process the image by SMQT method, and then Daubechies first level DWT is applied. The SVD of the image is computed, and Inverse Discrete Wavelet Transform(IDWT) is applied. To the singular value decomposed image, l1-norm minimization sparse representation employed by the K-SVD algorithm is computed where the image is divided into predefined shoeprint image patches of size 8 by 8. Shoeprint images of three different databases with different image quality are tested.

The performance of the algorithm is assessed by comparing the original shoeprint image and the image obtained after proposed algorithm based on objective and subjective parameters like PSNR, MSE, and MOS. The results show the proposed method gives better performance in terms of contrast (Variance) and brightness (Mean). Finally, as a conclusion, we state that the proposed algorithm enhances the image better than the existing method DWT-SVD.

 

 

sted, utgiver, år, opplag, sider
2017. , s. 63
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-15620OAI: oai:DiVA.org:bth-15620DiVA, id: diva2:1163884
Fag / kurs
ET2566 Master's Thesis (120 credits) in Electrical Engineering with emphasis on Signal processing
Utdanningsprogram
ETASB Master of Science Programme in Electrical Engineering with emphasis on Signal Processing
Presentation
2017-09-14, Blekinge Tekniska Hogskola, Karlskrona, 13:30 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2017-12-21 Laget: 2017-12-08 Sist oppdatert: 2017-12-21bibliografisk kontrollert

Open Access i DiVA

fulltext(4257 kB)260 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4257 kBChecksum SHA-512
894e47dc12f0131f7ccfebdfbc93a02e84d37ea953b6cb98985e68a0210beb7ef92ff89c565c2430daa9f32490b3f11e0ec2394e9d1a2936776a8c62cbdb68e9
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 260 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 564 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf