Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance Evaluation of Container and Virtual Machine Running Cassandra Workload
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.ORCID iD: 0000-0002-3118-5058
2017 (English)In: PROCEEDINGS OF 2017 3RD INTERNATIONAL CONFERENCE OF CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH) / [ed] Essaaidi, M Zbakh, M, 2017, p. 24-31Conference paper, Published paper (Refereed)
Abstract [en]

Today, scalable and high-available NoSQL distributed databases are largely used as Big Data platforms. Such distributed databases typically run on a virtualized infrastructure that could be implemented using Hypervisorb ased virtualiz ation or Container-based virtualiz ation. Hypervisor-based virtualization is a mature technology but imposes overhead on CPU, memory, networking, and disk Recently, by sharing the operating system resources and simplifying the deployment of applications, container-based virtualization is getting more popular. Container-based virtualization is lightweight in resource consumption while also providing isolation. However, disadvantages are security issues and 110 performance. As a result, today these two technologies are competing to provide virtual instances for running big data platforms. Hence, a key issue becomes the assessment of the performance of those virtualization technologies while running distributed databases. This paper presents an extensive performance comparison between VMware and Docker container, while running Apache Cassandra as workload. Apache Cassandra is a leading NoSQL distributed database when it comes to Big Data platforms. As baseline for comparisons we used the Cassandra's performance when running on a physical infrastructure. Our study shows that Docker had lower overhead compared to the VMware when running Cassandra. In fact, the Cassandra's performance on the Dockerized infrastructure was as good as on the Non-Virtualized.

Place, publisher, year, edition, pages
2017. p. 24-31
Keywords [en]
Cassandra, Cloud computing, Containers, Docker, NoSQL databases, Virtual machine, VMware, Big Data, Performance evaluation
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-16000ISI: 000426451400004ISBN: 978-1-5386-1115-9 (print)OAI: oai:DiVA.org:bth-16000DiVA, id: diva2:1192665
Conference
3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), Rabat
Available from: 2018-03-23 Created: 2018-03-23 Last updated: 2018-11-06Bibliographically approved
In thesis
1. Performance Implications of Virtualization
Open this publication in new window or tab >>Performance Implications of Virtualization
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Virtualization is a component of cloud computing. Virtualization transforms traditional inflexible, complex infrastructure of individual servers, storage, and network hardware into a flexible virtual resource pool and increases IT agility, flexibility, and scalability while creating significant cost savings. Additional benefits of virtualization include, greater work mobility, increased performance and availability of resources, and automated operations. Many virtualization solutions have been implemented. There are plenty of cloud providers using different virtualization solutions to provide virtual machines (VMs) and containers, respectively. Various virtualization solutions have different performance overheads due to their various implementations of virtualization and supported features. A cloud user should understand performance overheads of different virtualization solutions and the impact on the performance caused by different virtualization features, so that it can choose appropriate virtualization solution, for the services to avoid degrading their quality of services (QoSs). In this research, we investigate the impacts of different virtualization technologies such as, container-based, and hypervisor-based virtualization as well as various virtualization features such as, over-allocation of resources, live migration, scalability, and distributed resource scheduling on the performance of various applications for instance, Cassandra NoSQL database, and a large telecommunication application. According to our results, hypervisor-based virtualization has many advantages and is more mature compare to the recently introduced container-based virtualization. However, impacts of the hypervisorbased virtualization on the performance of the applications is much higher than the container-based virtualization as well as the non-virtualized solution. The findings of this research should be of benefit to the ones who provide planning, designing, and implementing of the IT infrastructure.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2019. p. 211
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 1
Keywords
Cloud computing, Virtualization
National Category
Computer Systems
Identifiers
urn:nbn:se:bth-17217 (URN)978-91-7295-361-1 (ISBN)
Public defence
2019-01-16, J1650, Campus Gräsvik, Karlskrona, 13:00 (English)
Opponent
Supervisors
Available from: 2018-11-05 Created: 2018-11-02 Last updated: 2019-01-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Shirinbab, SogandLundberg, LarsCasalicchio, Emiliano

Search in DiVA

By author/editor
Shirinbab, SogandLundberg, LarsCasalicchio, Emiliano
By organisation
Department of Computer Science and Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 91 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf