Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Statistical Problems for the Generalized Burgers Equation: High-Intensity Noise in Waveguide Systems
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för maskinteknik. Moscow MV Lomonosov State Univ, Phys Fac, Moscow 119991, Russia.;Nizhnii Novgorod State Univ, Radiophys Fac, Nizhn Novgorod, Russia.;Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow, Russia.;Russian Acad Sci, Schmidt Inst Phys Earth, Moscow, Russia.;Blekinge Inst Technol, Karlskrona, Sweden..
Nizhnii Novgorod State Univ, RUS.
2018 (engelsk)Inngår i: Doklady. Mathematics, ISSN 1064-5624, E-ISSN 1531-8362, Vol. 97, nr 1, s. 95-98Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A one-dimensional equation is presented that generalizes the Burgers equation known in the theory of waves and in turbulence models. It describes the nonlinear evolution of waves in pipes of variable cross section filled with a dissipative medium, as well as in ray tubes, if the approximation of geometric acoustics of an inhomogeneous medium is used. The generalized equation is reduced to the common Burgers equation with a dissipative parameter-the "Reynolds-Goldberg number," depending on the coordinate. The method for solving statistical problems corresponding to specified characteristics of a noise signal at the input of the system is described. Integral expressions for exact solutions are given for the correlation function and the noise intensity spectrum experiencing nonlinear distortions during propagation in a waveguide. For waves in a dissipative medium, an approximate method of calculating statistical characteristics is given, consisting in finding an auxiliary correlation function and the subsequent nonlinear functional transformation. Solutions have a complicated form, so physical analysis of phenomena requires the numerical methods. For some correlation functions of stationary noise with initial Gaussian statistics and some waveguide systems, it is possible to obtain simple results.

sted, utgiver, år, opplag, sider
MAIK NAUKA/INTERPERIODICA/SPRINGER , 2018. Vol. 97, nr 1, s. 95-98
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-16078DOI: 10.1134/S1064562418010040ISI: 000427590400025OAI: oai:DiVA.org:bth-16078DiVA, id: diva2:1195682
Tilgjengelig fra: 2018-04-06 Laget: 2018-04-06 Sist oppdatert: 2018-04-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Rudenko, Oleg

Søk i DiVA

Av forfatter/redaktør
Rudenko, Oleg
Av organisasjonen
I samme tidsskrift
Doklady. Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 47 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf