Endre søk

Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annet format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annet språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf
NON-ASSOCIATIVE ORE EXTENSIONS
Högskolan Väst, SWE.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap. Blekinge Inst Technol, Dept Math & Nat Sci, SE-37179 Karlskrona, Sweden..ORCID-id: 0000-0001-8095-0820
Mälardalens högskola, SWE.
2018 (engelsk)Inngår i: Israel Journal of Mathematics, ISSN 0021-2172, E-ISSN 1565-8511, Vol. 224, nr 1, s. 263-292Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

We introduce non-associative Ore extensions, S = R[X; sigma, delta], for any non-ssociative unital ring R and any additive maps sigma, delta : R -> R satisfying sigma(1) = 1 and delta(1) = 0. In the special case when delta is either left or right R-delta-linear, where R-delta = ker(delta), and R is delta-simple, i.e. {0} and R are the only delta-invariant ideals of R, we determine the ideal structure of the non-associative differential polynomial ring D = R[X; id(R),delta]. Namely, in that case, we show that all non-zero ideals of D are generated by monic polynomials in the center Z(D) of D. We also show that Z(D) = R-delta[p] for a monic p is an element of R-delta [X], unique up to addition of elements from Z(R)(delta) . Thereby, we generalize classical results by Amitsur on differential polynomial rings defined by derivations on associative and simple rings. Furthermore, we use the ideal structure of D to show that D is simple if and only if R is delta-simple and Z(D) equals the field R-delta boolean AND Z(R). This provides us with a non-associative generalization of a result by Oinert, Richter and Silve-strov. This result is in turn used to show a non-associative version of a classical result by Jordan concerning simplicity of D in the cases when the characteristic of the field R-delta boolean AND Z(R) is either zero or a prime. We use our findings to show simplicity results for both non-associative versions of Weyl algebras and non-associative differential polynomial rings defined by monoid/group actions on compact Hausdorff spaces.

##### sted, utgiver, år, opplag, sider
HEBREW UNIV MAGNES PRESS , 2018. Vol. 224, nr 1, s. 263-292
##### Identifikatorer
ISI: 000431796000010OAI: oai:DiVA.org:bth-16218DiVA, id: diva2:1209743

open access

Tilgjengelig fra: 2018-05-24 Laget: 2018-05-24 Sist oppdatert: 2018-05-24bibliografisk kontrollert

#### Open Access i DiVA

fulltext(464 kB)115 nedlastinger
##### Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 464 kBChecksum SHA-512
77d2048e4708dd749e242c49a141486f10271cdd813262cf62dfffae78cccc3a8b68d5a9d0f8b8606c8132ed3b3055a755057cbfef33c1cb554db61ddcf694d1
Type fulltextMimetype application/pdf

Öinert, Johan

#### Søk i DiVA

Öinert, Johan
##### I samme tidsskrift
Israel Journal of Mathematics

#### Søk utenfor DiVA

Totalt: 115 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige
doi
urn-nbn

#### Altmetric

doi
urn-nbn
Totalt: 124 treff

Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annet format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annet språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf