Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evolutionary clustering techniques for expertise mining scenarios
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Technical University Sofia, BUL.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-0535-1761
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: ICAART 2018 - Proceedings of the 10th International Conference on Agents and Artificial Intelligence, Volume 2 / [ed] van den Herik J.,Rocha A.P., SciTePress , 2018, Vol. 2, s. 523-530Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The problem addressed in this article concerns the development of evolutionary clustering techniques that can be applied to adapt the existing clustering solution to a clustering of newly collected data elements. We are interested in clustering approaches that are specially suited for adapting clustering solutions in the expertise retrieval domain. This interest is inspired by practical applications such as expertise retrieval systems where the information available in the system database is periodically updated by extracting new data. The experts available in the system database are usually partitioned into a number of disjoint subject categories. It is becoming impractical to re-cluster this large volume of available information. Therefore, the objective is to update the existing expert partitioning by the clustering produced on the newly extracted experts. Three different evolutionary clustering techniques are considered to be suitable for this scenario. The proposed techniques are initially evaluated by applying the algorithms on data extracted from the PubMed repository. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved.

sted, utgiver, år, opplag, sider
SciTePress , 2018. Vol. 2, s. 523-530
Emneord [en]
Data Mining, Expert Finding, Health Science, Knowledge Management, Natural Language Processing, Artificial intelligence, Cluster analysis, Natural language processing systems, Search engines, Clustering approach, Clustering solutions, Data elements, Evolutionary clustering, Retrieval systems, System database
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-16224Scopus ID: 2-s2.0-85046663632ISBN: 9789897582752 (tryckt)OAI: oai:DiVA.org:bth-16224DiVA, id: diva2:1209796
Konferanse
10th International Conference on Agents and Artificial Intelligence, ICAART, Funchal, Madeira
Tilgjengelig fra: 2018-05-24 Laget: 2018-05-24 Sist oppdatert: 2018-05-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Personposter BETA

Boeva, VeselkaLavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Boeva, VeselkaLavesson, NiklasRosander, Oliver
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 280 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf