Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Expertise Recommender System Based on Data from an Institutional Repository (DiVA)
Technical University of Sofia-branch Plovdiv, BUL.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Biblioteket.ORCID-id: 0000-0002-4308-7332
Vise andre og tillknytning
2018 (engelsk)Inngår i: Proceedings of the 22nd edition of the International Conference on ELectronic PUBlishing, 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Finding experts in academics is an important practical problem, e.g. recruiting reviewersfor reviewing conference, journal or project submissions, partner matching for researchproposals, finding relevant M. Sc. or Ph. D. supervisors etc. In this work, we discuss anexpertise recommender system that is built on data extracted from the Blekinge Instituteof Technology (BTH) instance of the institutional repository system DiVA (DigitalScientific Archive). DiVA is a publication and archiving platform for research publicationsand student essays used by 46 publicly funded universities and authorities in Sweden andthe rest of the Nordic countries (www.diva-portal.org). The DiVA classification system isbased on the Swedish Higher Education Authority (UKÄ) and the Statistic Sweden's (SCB)three levels classification system. Using the classification terms associated with studentM. Sc. and B. Sc. theses published in the DiVA platform, we have developed a prototypesystem which can be used to identify and recommend subject thesis supervisors inacademy.

sted, utgiver, år, opplag, sider
2018.
Emneord [en]
Text mining, Recommender system, Institutional repository, Ontology
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-16660DOI: 0.4000/proceedings.elpub.2018.17OAI: oai:DiVA.org:bth-16660DiVA, id: diva2:1228974
Konferanse
22nd edition of the International Conference on ELectronic PUBlishing - Connecting the Knowledge Commons: From Projects to Sustainable Infrastructure, Toronto
Merknad

open access

Tilgjengelig fra: 2018-06-29 Laget: 2018-06-29 Sist oppdatert: 2019-06-18bibliografisk kontrollert

Open Access i DiVA

fulltext(489 kB)88 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 489 kBChecksum SHA-512
d2aad979b508d15ef694ca28d5082eca8eb787d7298dac82571759fb33ef7a1c69562518247a4a18edc322357fe5435a0947039aa5775af4ca723e678716123d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstAn Expertise Recommender SystemBased on Data from an InstitutionalRepository (DiVA)

Personposter BETA

Boeva, VeselkaLinde, PeterLavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Vishnu Manasa, DevagiriBoeva, VeselkaLinde, PeterLavesson, Niklas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 88 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 647 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf