Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Outlier Detection for Video Session Data Using Sequential Pattern Mining
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: ACM SIGKDD Workshop On Outlier Detection De-constructed, 2018Konferensbidrag, Enbart muntlig presentation (Refereegranskat)
Abstract [en]

The growth of Internet video and over-the-top transmission techniqueshas enabled online video service providers to deliver highquality video content to viewers. To maintain and improve thequality of experience, video providers need to detect unexpectedissues that can highly affect the viewers’ experience. This requiresanalyzing massive amounts of video session data in order to findunexpected sequences of events. In this paper we combine sequentialpattern mining and clustering to discover such event sequences.The proposed approach applies sequential pattern mining to findfrequent patterns by considering contextual and collective outliers.In order to distinguish between the normal and abnormal behaviorof the system, we initially identify the most frequent patterns. Thena clustering algorithm is applied on the most frequent patterns.The generated clustering model together with Silhouette Index areused for further analysis of less frequent patterns and detectionof potential outliers. Our results show that the proposed approachcan detect outliers at the system level.

Ort, förlag, år, upplaga, sidor
2018.
Nyckelord [en]
Cluster Analysis, Data Stream Mining, Outlier Detection, Sequential Pattern Mining
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-16944OAI: oai:DiVA.org:bth-16944DiVA, id: diva2:1252245
Konferens
ACM SIGKDD Workshop On Outlier Detection De-constructed, London,
Forskningsfinansiär
KK-stiftelsen, 20140032Tillgänglig från: 2018-10-01 Skapad: 2018-10-01 Senast uppdaterad: 2018-10-12Bibliografiskt granskad
Ingår i avhandling
1. Data Modeling for Outlier Detection
Öppna denna publikation i ny flik eller fönster >>Data Modeling for Outlier Detection
2018 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis explores the data modeling for outlier detection techniques in three different application domains: maritime surveillance, district heating, and online media and sequence datasets. The proposed models are evaluated and validated under different experimental scenarios, taking into account specific characteristics and setups of the different domains.

Outlier detection has been studied and applied in many domains. Outliers arise due to different reasons such as fraudulent activities, structural defects, health problems, and mechanical issues. The detection of outliers is a challenging task that can reveal system faults, fraud, and save people's lives. Outlier detection techniques are often domain-specific. The main challenge in outlier detection relates to modeling the normal behavior in order to identify abnormalities. The choice of model is important, i.e., an incorrect choice of data model can lead to poor results. This requires a good understanding and interpretation of the data, the constraints, and the requirements of the problem domain. Outlier detection is largely an unsupervised problem due to unavailability of labeled data and the fact that labeled data is expensive.

We have studied and applied a combination of both machine learning and data mining techniques to build data-driven and domain-oriented outlier detection models. We have shown the importance of data preprocessing as well as feature selection in building suitable methods for data modeling. We have taken advantage of both supervised and unsupervised techniques to create hybrid methods. For example, we have proposed a rule-based outlier detection system based on open data for the maritime surveillance domain. Furthermore, we have combined cluster analysis and regression to identify manual changes in the heating systems at the building level. Sequential pattern mining for identifying contextual and collective outliers in online media data have also been exploited. In addition, we have proposed a minimum spanning tree clustering technique for detection of groups of outliers in online media and sequence data. The proposed models have been shown to be capable of explaining the underlying properties of the detected outliers. This can facilitate domain experts in narrowing down the scope of analysis and understanding the reasons of such anomalous behaviors. We have also investigated the reproducibility of the proposed models in similar application domains.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2018
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 4
Nyckelord
data modeling, cluster analysis, stream data, outlier detection
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:bth-16580 (URN)978-91-7295-358-1 (ISBN)
Presentation
2018-11-09, Blekinge Tekniska Högskola, Karlskrona, 10:00 (Engelska)
Opponent
Handledare
Projekt
Scalable resource-efficient systems for big data analytics
Forskningsfinansiär
KK-stiftelsen, 20140032
Tillgänglig från: 2018-10-25 Skapad: 2018-10-12 Senast uppdaterad: 2018-12-04Bibliografiskt granskad

Open Access i DiVA

fulltext(1030 kB)67 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1030 kBChecksumma SHA-512
d9eb8b6ce5e19f5a4ded3f5cb700cf1dd2d97d5cfe09d21459c37d0381a8e7e613e20cf9c7e53720515c4dad2afa073937327b707e70f35fa70b3868961ea866
Typ fulltextMimetyp application/pdf

Övriga länkar

Outlier Detection for Video Session Data Using Sequential Pattern Mining

Sök vidare i DiVA

Av författaren/redaktören
Abghari, ShahroozBoeva, VeselkaLavesson, NiklasGrahn, Håkan
Av organisationen
Institutionen för datalogi och datorsystemteknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 67 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 378 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf