Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Minimum Spanning Tree Clustering Approach for Outlier Detection in Event Sequences
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA) / [ed] Wani M.A.,Sayed-Mouchaweh M.,Lughofer E.,Gama J.,Kantardzic M., IEEE, 2018, s. 1123-1130, artikkel-id 8614207Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Outlier detection has been studied in many domains. Outliers arise due to different reasons such as mechanical issues, fraudulent behavior, and human error. In this paper, we propose an unsupervised approach for outlier detection in a sequence dataset. The proposed approach combines sequential pattern mining, cluster analysis, and a minimum spanning tree algorithm in order to identify clusters of outliers. Initially, the sequential pattern mining is used to extract frequent sequential patterns. Next, the extracted patterns are clustered into groups of similar patterns. Finally, the minimum spanning tree algorithm is used to find groups of outliers. The proposed approach has been evaluated on two different real datasets, i.e., smart meter data and video session data. The obtained results have shown that our approach can be applied to narrow down the space of events to a set of potential outliers and facilitate domain experts in further analysis and identification of system level issues.

sted, utgiver, år, opplag, sider
IEEE, 2018. s. 1123-1130, artikkel-id 8614207
Emneord [en]
Clustering, Minimum spanning tree, Outlier detection, Sequential pattern mining
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-17100DOI: 10.1109/ICMLA.2018.00182ISI: 000463034400174ISBN: 9781538668047 (tryckt)OAI: oai:DiVA.org:bth-17100DiVA, id: diva2:1254669
Konferanse
17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018; Orlando; United States; 17 December 2018 through 20 December
Forskningsfinansiär
Knowledge Foundation, 20140032Tilgjengelig fra: 2018-10-09 Laget: 2018-10-09 Sist oppdatert: 2019-06-28bibliografisk kontrollert
Inngår i avhandling
1. Data Modeling for Outlier Detection
Åpne denne publikasjonen i ny fane eller vindu >>Data Modeling for Outlier Detection
2018 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis explores the data modeling for outlier detection techniques in three different application domains: maritime surveillance, district heating, and online media and sequence datasets. The proposed models are evaluated and validated under different experimental scenarios, taking into account specific characteristics and setups of the different domains.

Outlier detection has been studied and applied in many domains. Outliers arise due to different reasons such as fraudulent activities, structural defects, health problems, and mechanical issues. The detection of outliers is a challenging task that can reveal system faults, fraud, and save people's lives. Outlier detection techniques are often domain-specific. The main challenge in outlier detection relates to modeling the normal behavior in order to identify abnormalities. The choice of model is important, i.e., an incorrect choice of data model can lead to poor results. This requires a good understanding and interpretation of the data, the constraints, and the requirements of the problem domain. Outlier detection is largely an unsupervised problem due to unavailability of labeled data and the fact that labeled data is expensive.

We have studied and applied a combination of both machine learning and data mining techniques to build data-driven and domain-oriented outlier detection models. We have shown the importance of data preprocessing as well as feature selection in building suitable methods for data modeling. We have taken advantage of both supervised and unsupervised techniques to create hybrid methods. For example, we have proposed a rule-based outlier detection system based on open data for the maritime surveillance domain. Furthermore, we have combined cluster analysis and regression to identify manual changes in the heating systems at the building level. Sequential pattern mining for identifying contextual and collective outliers in online media data have also been exploited. In addition, we have proposed a minimum spanning tree clustering technique for detection of groups of outliers in online media and sequence data. The proposed models have been shown to be capable of explaining the underlying properties of the detected outliers. This can facilitate domain experts in narrowing down the scope of analysis and understanding the reasons of such anomalous behaviors. We have also investigated the reproducibility of the proposed models in similar application domains.

sted, utgiver, år, opplag, sider
Karlskrona: Blekinge Tekniska Högskola, 2018
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 4
Emneord
data modeling, cluster analysis, stream data, outlier detection
HSV kategori
Identifikatorer
urn:nbn:se:bth-16580 (URN)978-91-7295-358-1 (ISBN)
Presentation
2018-11-09, Blekinge Tekniska Högskola, Karlskrona, 10:00 (engelsk)
Opponent
Veileder
Prosjekter
Scalable resource-efficient systems for big data analytics
Forskningsfinansiär
Knowledge Foundation, 20140032
Tilgjengelig fra: 2018-10-25 Laget: 2018-10-12 Sist oppdatert: 2018-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Abghari, ShahroozBoeva, VeselkaLavesson, NiklasGrahn, Håkan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 493 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf