Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computer Vision Algorithms for Intelligent Transportation Systems Applications
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
2018 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In recent years, Intelligent Transportation Systems (ITS) have emerged as an efficient way of enhancing traffic flow, safety and management. These goals are realized by combining various technologies and analyzing the acquired data from vehicles and roadways. Among all ITS technologies, computer vision solutions have the advantages of high flexibility, easy maintenance and high price-performance ratio that make them very popular for transportation surveillance systems. However, computer vision solutions are demanding and challenging due to computational complexity, reliability, efficiency and accuracy among other aspects.

In this thesis, three transportation surveillance systems based on computer vision are presented. These systems are able to interpret the image data and extract the information about the presence, speed and class of vehicles, respectively. The image data in these proposed systems are acquired using Unmanned Aerial Vehicle (UAV) as a non-stationary source and roadside camera as a stationary one. The goal of these works is to enhance the general performance in accuracy and robustness of the systems with variant illumination and traffic conditions.

This is a compilation thesis in systems engineering consists of three parts. The red thread through each part is a transportation surveillance system. The first part presents a change detection system using aerial images of a cargo port. The extracted information shows how the space is utilized at various times for further management and development of the port. The proposed solution can be used at different viewpoints and illumination levels e.g. sunset. The method is able to transform the images taken from different viewpoints and match them together and then using a proposed adaptive local threshold to detect discrepancies between them. In the second part, a vision-based vehicle's speed estimation system is presented. The measured speeds are essential information for law enforcement as well as estimation of traffic flow at certain points on the road. The system employs several intrusion lines to extract the movement pattern of each vehicle (non-equidistant sampling) as an input feature to the proposed analytical model. In addition, other parameters such as camera sampling rate and distances between intrusion lines are also taken into account to address the uncertainty in the measurements and to obtain the probability density function of the vehicle's speed. In the third part, a vehicle classification system is provided to categorize vehicles into “private cars", “light trailers", “lorry or bus" and “heavy trailer". This information can be used by authorities for surveillance and development of the roads. The proposed system consists of multiple fuzzy c-means clusterings using input features of length, width and speed of each vehicle. The system has been constructed using prior knowledge of traffic regulations regarding each class of vehicle in order to enhance the classification performance.

Ort, förlag, år, upplaga, sidor
Karlshamn: Blekinge Tekniska Högskola, 2018.
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 5
Nyckelord [en]
computer vision, intelligent transportation systems (ITS), speed measurement, vehicle classification
Nationell ämneskategori
Signalbehandling Datorseende och robotik (autonoma system) Annan data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:bth-17166ISBN: 978-91-7295-359-8 (tryckt)OAI: oai:DiVA.org:bth-17166DiVA, id: diva2:1258308
Presentation
2018-11-29, Blekinge Institute of technology, Karlshamn, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-10-25 Skapad: 2018-10-24 Senast uppdaterad: 2018-12-17Bibliografiskt granskad
Delarbeten
1. Change detection in aerial images using a Kendall's TAU distance pattern correlation
Öppna denna publikation i ny flik eller fönster >>Change detection in aerial images using a Kendall's TAU distance pattern correlation
2016 (Engelska)Ingår i: PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), IEEE, 2016Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Change detection in aerial images is the core of many remote sensing applications to analyze the dynamics of a wide area on the ground. In this paper, a remote sensing method is proposed based on viewpoint transformation and a modified Kendall rank correlation measure to detect changes in oblique aerial images. First, the different viewpoints of the aerial images are compromised and then, a local pattern descriptor based on Kendall rank correlation coefficient is introduced. A new distance measure referred to as Kendall's Tau-d (Tau distance) coefficient is presented to determine the changed regions. The developed system is applied on oblique aerial images with very low aspect angles that obtained using an unmanned aerial vehicle in two different days with drastic change in illumination and weather conditions. The experimental results indicate the robustness of the proposed method to variant illumination, shadows and multiple viewpoints for change detection in aerial images.

Ort, förlag, år, upplaga, sidor
IEEE, 2016
Nyckelord
Aerial images, change detection, Kendall rank correlation, optical remote sensing
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:bth-13878 (URN)10.1109/EUVIP.2016.7764604 (DOI)000391630800023 ()978-1-5090-2781-1 (ISBN)
Konferens
2016 6th European Workshop on Visual Information Processing (EUVIP), Marseille
Tillgänglig från: 2017-02-03 Skapad: 2017-02-03 Senast uppdaterad: 2018-10-24Bibliografiskt granskad
2. Design of a video-based vehicle speed measurement system: an uncertainty approach
Öppna denna publikation i ny flik eller fönster >>Design of a video-based vehicle speed measurement system: an uncertainty approach
2019 (Engelska)Ingår i: 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 2018, pp. 44-49., IEEE, 2019, artikel-id 8640964Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Speed measurement is one of the key components of intelligent transportation systems. It provides suitable information for traffic management and law enforcement. This paper presents a versatile and analytical model for a video-based speed measurement in form of the probability density function (PDF). In the proposed model, the main factors contributing to the uncertainties of the measurement are considered. Furthermore, a guideline is introduced in order to design a video-based speed measurement system based on the traffic and other requirements. As a proof of concept, the model has been simulated and tested for various speeds. An evaluation validates the strength of the model for accurate speed measurement under realistic circumstances.

Ort, förlag, år, upplaga, sidor
IEEE, 2019
Nyckelord
Intelligent transportation systems, Machine vision, Motion analysis, Pattern recognition, Speed measurement
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:bth-17163 (URN)10.1109/ICIEV.2018.8640964 (DOI)000462610300008 ()9781538651612 (ISBN)
Konferens
Joint 7th International Conference on Informatics, Electronics and Vision and 2nd International Conference on Imaging, Vision and Pattern Recognition, ICIEV-IVPR 2018; Kitakyushu; Japan; 25-28 June 2018
Tillgänglig från: 2018-10-23 Skapad: 2018-10-23 Senast uppdaterad: 2019-06-28Bibliografiskt granskad
3. Analytical modelling for video-based vehicle speed measurement framework
Öppna denna publikation i ny flik eller fönster >>Analytical modelling for video-based vehicle speed measurement framework
2019 (Engelska)Ingår i: Optik (Stuttgart), ISSN 0030-4026, E-ISSN 1618-1336Artikel i tidskrift (Refereegranskat) Submitted
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:bth-17160 (URN)
Tillgänglig från: 2018-10-23 Skapad: 2018-10-23 Senast uppdaterad: 2018-10-31Bibliografiskt granskad
4. Vehicle speed measurement model for video-based systems
Öppna denna publikation i ny flik eller fönster >>Vehicle speed measurement model for video-based systems
2019 (Engelska)Ingår i: Computers & electrical engineering, ISSN 0045-7906, E-ISSN 1879-0755, Vol. 76, s. 238-248Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Advanced analysis of road traffic data is an essential component of today's intelligent transportation systems. This paper presents a video-based vehicle speed measurement system based on a proposed mathematical model using a movement pattern vector as an input variable. The system uses the intrusion line technique to measure the movement pattern vector with low computational complexity. Further, the mathematical model introduced to generate the pdf (probability density function) of a vehicle's speed that improves the speed estimate. As a result, the presented model provides a reliable framework with which to optically measure the speeds of passing vehicles with high accuracy. As a proof of concept, the proposed method was tested on a busy highway under realistic circumstances. The results were validated by a GPS (Global Positioning System)-equipped car and the traffic regulations at the measurement site. The experimental results are promising, with an average error of 1.77 % in challenging scenarios.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019
Nyckelord
Intelligent transportation systems; Machine vision; Motion analysis; Pattern recognition; Speed measurement system
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:bth-17161 (URN)10.1016/j.compeleceng.2019.04.001 (DOI)000470954900019 ()
Anmärkning

open access

Tillgänglig från: 2018-10-23 Skapad: 2018-10-23 Senast uppdaterad: 2019-06-27Bibliografiskt granskad
5. Vehicle classification based on multiple fuzzy c-means clustering using dimensions and speed features
Öppna denna publikation i ny flik eller fönster >>Vehicle classification based on multiple fuzzy c-means clustering using dimensions and speed features
2018 (Engelska)Ingår i: Procedia Computer Science, Elsevier, 2018, Vol. 126, s. 7s. 1344-1350Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Vehicle classification has a significant use in traffic surveillance and management. There are many methods proposed to accomplish this task using variety of sensorS. In this paper, a method based on fuzzy c-means (FCM) clustering is introduced that uses dimensions and speed features of each vehicle. This method exploits the distinction in dimensions features and traffic regulations for each class of vehicles by using multiple FCM clusterings and initializing the partition matrices of the respective classifierS. The experimental results demonstrate that the proposed approach is successful in clustering vehicles from different classes with similar appearanceS. In addition, it is fast and efficient for big data analysiS.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018. s. 7
Serie
Procedia Computer Science, ISSN 1877-0509
Nyckelord
Vehicle classification, Fuzzy c-means clustering, Intelligent transportation systems, Pattern recognition
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:bth-17165 (URN)10.1016/j.procS.2018.08.085 (DOI)
Konferens
22nd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES2018), Belgrade
Anmärkning

open access

Tillgänglig från: 2018-10-23 Skapad: 2018-10-23 Senast uppdaterad: 2018-11-29Bibliografiskt granskad

Open Access i DiVA

fulltext(76794 kB)97 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 76794 kBChecksumma SHA-512
955aa6ac01e8ae5fe12eff0eb98dd0f435a3769996809b458180cfe5a4795099c7182b5de47969f03061138706f3c4c39891d016d56fbc875938d572f2dc4856
Typ fulltextMimetyp application/pdf

Personposter BETA

Javadi, Mohammad Saleh

Sök vidare i DiVA

Av författaren/redaktören
Javadi, Mohammad Saleh
Av organisationen
Institutionen för matematik och naturvetenskap
SignalbehandlingDatorseende och robotik (autonoma system)Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 126 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 421 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf