CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the search for industry-relevant regression testing research
Blekinge Institute of Technology, Faculty of Computing, Department of Software Engineering.ORCID iD: 0000-0001-7266-5632
Lund University, SWE.
Halmstad University, SWE.
Halmstad University, SWE.
Show others and affiliations
2019 (English)In: Journal of Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616Article in journal (Refereed) Epub ahead of print
Abstract [en]

Regression testing is a means to assure that a change in the software, or

its execution environment, does not introduce new defects. It involves the expensive

undertaking of rerunning test cases. Several techniques have been proposed

to reduce the number of test cases to execute in regression testing, however, there

is no research on how to assess industrial relevance and applicability of such techniques.

We conducted a systematic literature review with the following two goals:

rstly, to enable researchers to design and present regression testing research with

a focus on industrial relevance and applicability and secondly, to facilitate the industrial

adoption of such research by addressing the attributes of concern from the

practitioners' perspective. Using a reference-based search approach, we identied

1068 papers on regression testing. We then reduced the scope to only include papers

with explicit discussions about relevance and applicability (i.e. mainly studies

involving industrial stakeholders). Uniquely in this literature review, practitioners

were consulted at several steps to increase the likelihood of achieving our aim of

identifying factors important for relevance and applicability. We have summarised

the results of these consultations and an analysis of the literature in three taxonomies,

which capture aspects of industrial-relevance regarding the regression

testing techniques. Based on these taxonomies, we mapped 38 papers reporting

the evaluation of 26 regression testing techniques in industrial settings.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2019.
Keywords [en]
Industrial relevance, Recommendations, Regression testing, Systematic literature review, Taxonomy
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:bth-17364DOI: 10.1007/s10664-018-9670-1OAI: oai:DiVA.org:bth-17364DiVA, id: diva2:1266923
Available from: 2018-11-29 Created: 2018-11-29 Last updated: 2019-03-07Bibliographically approved
In thesis
1. Regression Testing Challenges and Solutions: An Industry-Academia Perspective
Open this publication in new window or tab >>Regression Testing Challenges and Solutions: An Industry-Academia Perspective
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Background: Software quality assurance (QA) is an essential activity in the software development lifecycle. Among the different QA activities, regression testing is a challenging task for large-scale software development. Regression testing is a well-researched area, and a large number of techniques have been proposed to fulfill the needs of industry. Despite the extensive research, the adoption of proposed regression testing techniques in the industry is limited. Studies show that there is a visible gap between research and practice.

Objective: This work aims at reducing the gap between industry and academia in regression testing. To fulfill this aim we have the following objectives:

1) Understanding the practitioners' goals regarding regression testing.

2) Understanding the current state of regression testing practice and challenges in the industry.

3) Investigating the testing research applicable in an industrial context.

Method: We conducted multiple studies using different methods.

To explore the industry perspective on regression testing we used focus group and interview-based studies. To explore solutions from the literature, we used the systematic literature review and systematic mapping study.

Results: This thesis presents the practitioners' specific regression testing goals. The identified goals are confidence, controlled fault slippage, effectiveness, efficiency, and customer satisfaction. The challenges identified in the thesis are of two categories, 1) management related challenges and 2) technical challenges. Technical challenges relate to test suite maintenance, test case selection, test case prioritization, evaluation of regression testing.

We have mapped 26 empirically evaluated regression testing techniques to the context, effect, and information taxonomies, and provided a guide to the practitioners regarding the adoption of the techniques in an industrial setting. We have also classified 56 model-based test case generation techniques regarding their strengths/limitations, input/intermediate models used, and relevance to the industrial context.

Conclusions: The challenges identified in this study are not new for research and practice. There could be two reasons regarding the presence of recurring challenges: 1) regression testing techniques proposed in the literature do not fit the companies’ context, 2) or, companies are not aware of the availability of the techniques that could be suitable for their context. To support the adoption of existing research on regression testing in the industry, we have presented three taxonomies. These taxonomies, allow the characterization of regression testing techniques and enable to determine which of these techniques might be suitable in a given context. Furthermore, the identification of information needs for these techniques would be helpful to learn the implications regarding the cost of adoption. Regarding the support in test case generation, we conclude that current research on interaction model-based test case generation techniques did not illustrate the use of rigorous methodology, and currently, model-based test case generation techniques have low relevance for the industrial problems.

Place, publisher, year, edition, pages
Karlskrona, Sweden: Blekinge Tekniska Högskola, 2019. p. 146
Series
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 2
National Category
Software Engineering
Identifiers
urn:nbn:se:bth-17381 (URN)978-91-7295-365-9 (ISBN)
Presentation
2019-01-08, J1650, Campus Gräsvik, Karlskrona, 14:00 (English)
Opponent
Supervisors
Funder
VINNOVA, 2015-03235
Available from: 2018-12-06 Created: 2018-12-05 Last updated: 2019-01-17Bibliographically approved

Open Access in DiVA

fulltext(322 kB)66 downloads
File information
File name FULLTEXT01.pdfFile size 322 kBChecksum SHA-512
b7ed9a4e04d62e189c24eaf768138785d1deabc43b2fdb244cb6e173d0aa23a2128cfb3e94160dcca5da558c104106e22609a33f3850c1b27c43d6b335780fa1
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Ali, Nauman bin

Search in DiVA

By author/editor
Ali, Nauman binMinhas, Nasir Mehmood
By organisation
Department of Software Engineering
In the same journal
Journal of Empirical Software Engineering
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 66 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf