Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Wavelet Transform-Based Neural Network Denoising Algorithm for Mobile Phonocardiography
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
Univ Pavia, ITA.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2019 (engelsk)Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 4, artikkel-id 957Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cardiovascular pathologies cause 23.5% of human deaths, worldwide. An auto-diagnostic system monitoring heart activity, which can identify the early symptoms of cardiac illnesses, might reduce the death rate caused by these problems. Phonocardiography (PCG) is one of the possible techniques able to detect heart problems. Nevertheless, acoustic signal enhancement is required since it is exposed to various disturbances coming from different sources. The most common denoising enhancement is based on the Wavelet Transform (WT). However, the WT is highly susceptible to variations in the noise frequency distribution. This paper proposes a new adaptive denoising algorithm, which combines WT and Time Delay Neural Networks (TDNN). The acquired signal is decomposed by means of the WT using the coif five-wavelet basis at the tenth decomposition level and then provided as input to the TDNN. Besides the advantage of adaptive thresholding, the reason for using TDNNs is their capacity of estimating the Inverse Wavelet Transform (IWT). The best parameters of the TDNN were found for a NN consisting of 25 neurons in the first and 15 in the second layer and the delay block of 12 samples. The method was evaluated on several pathological heart sounds and on signals recorded in a noisy environment. The performance of the developed system with respect to other wavelet-based denoising approaches was validated by the online questionnaire.

sted, utgiver, år, opplag, sider
MDPI , 2019. Vol. 19, nr 4, artikkel-id 957
Emneord [en]
adaptive filters, auscultation techniques, auto-diagnostic system, cardiovascular pathologies, Inverse Wavelet Transform (IWT), noise cancellation, signal denoising, Time Delay Neural Networks (TDNN)
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-17760DOI: 10.3390/s19040957ISI: 000460829200208PubMedID: 30813479OAI: oai:DiVA.org:bth-17760DiVA, id: diva2:1302229
Merknad

open access

Tilgjengelig fra: 2019-04-04 Laget: 2019-04-04 Sist oppdatert: 2019-05-21bibliografisk kontrollert

Open Access i DiVA

fulltext(3421 kB)119 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3421 kBChecksum SHA-512
621f4d6c06294c8c0d60798aa350369532d72ff6b2d59d61be6dce8463f4ffbba158c7fe13b1165f4ac51445f9752150c573a527166f4b81581f5cb7c655de64
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Gradolewski, DawidJohansson, SvenKulesza, Wlodek

Søk i DiVA

Av forfatter/redaktør
Gradolewski, DawidJohansson, SvenKulesza, Wlodek
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 119 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf