Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The graded structure of algebraic Cuntz-Pimsner rings
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0001-8445-3936
(Engelska)Ingår i: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

The algebraic Cuntz-Pimsner rings are naturally $\mathbb{Z}$-graded rings that generalize both Leavitt path algebras and unperforated $\mathbb{Z}$-graded Steinberg algebras. We  classify strongly, epsilon-strongly and nearly epsilon-strongly graded algebraic Cuntz-Pimsner rings up to graded isomorphism. As an application, we characterize noetherian and artinian fractional skew monoid rings by a single corner automorphism.

Ort, förlag, år, upplaga, sidor
Elsevier B.V..
Nyckelord [en]
group graded ring, epsilon-strongly graded ring, Cuntz-Pimsner ring, Leavitt path algebra, fractional skew monoid ring
Nationell ämneskategori
Algebra och logik
Identifikatorer
URN: urn:nbn:se:bth-17808DOI: 10.1016/j.jpaa.2020.106369OAI: oai:DiVA.org:bth-17808DiVA, id: diva2:1304137
Forskningsfinansiär
Crafoordska stiftelsen, 20170843Tillgänglig från: 2019-04-11 Skapad: 2019-04-11 Senast uppdaterad: 2020-03-20Bibliografiskt granskad
Ingår i avhandling
1. The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner rings
Öppna denna publikation i ny flik eller fönster >>The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner rings
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The research field of graded ring theory is a rich area of mathematics with many connections to e.g. the field of operator algebras. In the last 15 years, algebraists and operator algebraists have defined algebraic analogues of important operator algebras. Some of those analogues are rings that come equipped with a group grading. We want to reach a better understanding of the graded structure of those analogue rings. Among group graded rings, the strongly graded rings stand out as being especially well-behaved. The development of the general theory of strongly graded rings was initiated by Dade in the 1980s and since then numerous structural results have been established for strongly graded rings.

 In this thesis, we study the class of epsilon-strongly graded rings which was recently introduced by Nystedt, Öinert and Pinedo. This class is a natural generalization of the well-studied class of unital strongly graded rings. Our aim is to lay the foundation for a general theory of epsilon-strongly graded rings generalizing the theory of strongly graded rings. This thesis is based on three articles. The first two articles mainly concern structural properties of epsilon-strongly graded rings. In the first article, we investigate a functorial construction called the induced quotient group grading. In the second article, using results from the first article, we generalize the Hilbert Basis Theorem for strongly graded rings to epsilon-strongly graded rings and apply it to Leavitt path algebras.  In the third article, we study the graded structure of algebraic Cuntz-Pimsner rings. In particular, we obtain a partial classification of unital strongly, epsilon-strongly and nearly epsilon-strongly graded Cuntz-Pimsner rings up to graded isomorphism.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2019
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 7
Nyckelord
group graded ring, epsilon-strongly graded ring, chain conditions, Leavitt path algebra, partial crossed product, Cuntz-Pimsner rings
Nationell ämneskategori
Algebra och logik
Identifikatorer
urn:nbn:se:bth-17809 (URN)978-91-7295-376-5 (ISBN)
Presentation
2019-05-15, G340, Valhallavägen 1, Karlskrona, 14:35 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Crafoordska stiftelsen, 20170843
Tillgänglig från: 2019-04-11 Skapad: 2019-04-11 Senast uppdaterad: 2019-06-11Bibliografiskt granskad

Open Access i DiVA

The graded structure of algebraic Cuntz-Pimsner rings(1295 kB)6 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1295 kBChecksumma SHA-512
93ada00a15bfb538ec420cccab63bc15f08677abaaf2fb6b7185e979cc8ba98da6e00da4e306f691d5cc13affa9945e40824b9fdfebca6af835e36713f4fbd2e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Lännström, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Lännström, Daniel
Av organisationen
Institutionen för matematik och naturvetenskap
I samma tidskrift
Journal of Pure and Applied Algebra
Algebra och logik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 6 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 245 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf