Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integration of Value and Sustainability Assessment in Design Space Exploration by Machine Learning: An Aerospace Application
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för maskinteknik. Blekinge Institute of Technology.ORCID-id: 0000-0001-5114-4811
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för strategisk hållbar utveckling. Blekinge Institute of Technology.ORCID-id: 0000-0002-7382-1825
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap. Blekinge Institute of Technology.ORCID-id: 0000-0002-3311-2530
GKN Aerospace Engine Systems, SWE.
2019 (Engelska)Ingår i: Design ScienceArtikel i tidskrift (Refereegranskat) Submitted
Ort, förlag, år, upplaga, sidor
2019.
Nationell ämneskategori
Maskinteknik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-17851OAI: oai:DiVA.org:bth-17851DiVA, id: diva2:1307067
Tillgänglig från: 2019-04-25 Skapad: 2019-04-25 Senast uppdaterad: 2019-05-21Bibliografiskt granskad
Ingår i avhandling
1. Tree Models for Design Space Exploration in Aerospace Engineering
Öppna denna publikation i ny flik eller fönster >>Tree Models for Design Space Exploration in Aerospace Engineering
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A crucial issue in the design of aircraft components is the evaluation of a larger number of potential design alternatives. This evaluation involves too expensive procedures, consequently, it slows down the search for optimal design samples. As a result, scarce or small number of design samples with high dimensional parameter space and high non-linearity pose issues in learning of surrogate models. Furthermore, surrogate models have more issues in handling qualitative data (discrete) than in handling quantitative data (continuous). These issues bring the need for investigations of methods of surrogate modelling for the most effective use of available data. 

 The thesis goal is to support engineers in the early design phase of development of new aircraft engines, specifically, a component of the engine known as Turbine Rear Structure (TRS). For this, tree-based approaches are explored for surrogate modelling for the purpose of exploration of larger search spaces and for speeding up the evaluations of design alternatives. First, we have investigated the performance of tree models on the design concepts of TRS. Second, we have presented an approach to explore design space using tree models, Random Forests. This approach includes hyperparameter tuning, extraction of parameters importance and if-then rules from surrogate models for a better understanding of the design problem. With this presented approach, we have shown that the performance of tree models improved by hyperparameter tuning when using design concepts data of TRS. Third, we performed sensitivity analysis to study the thermal variations on TRS and hence support robust design using tree models. Furthermore, the performance of tree models has been evaluated on mathematical linear and non-linear functions. The results of this study have shown that tree models fit well on non-linear functions. Last, we have shown how tree models support integration of value and sustainability parameters data (quantitative and qualitative data) together with TRS design concepts data in order to assess these parameters impact on the product life cycle in the early design phase.

 

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2019. s. 149
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 8
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:bth-17852 (URN)978-91-7295-377-2 (ISBN)
Presentation
2019-06-03, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-04-26 Skapad: 2019-04-25 Senast uppdaterad: 2019-06-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Bertoni, AlessandroHallstedt, SophieDasari, Siva Krishna

Sök vidare i DiVA

Av författaren/redaktören
Bertoni, AlessandroHallstedt, SophieDasari, Siva Krishna
Av organisationen
Institutionen för maskinteknikInstitutionen för strategisk hållbar utvecklingInstitutionen för datavetenskap
MaskinteknikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 237 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf