Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Anomaly detection of event sequences using multiple temporal resolutions and Markov chains
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.ORCID-id: 0000-0002-9316-4842
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.ORCID-id: 0000-0002-8929-7220
Ericsson Research, SWE.
Ericsson Research, SWE.
2019 (engelsk)Inngår i: Knowledge and Information Systems, ISSN 0219-1377, E-ISSN 0219-3116Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

Streaming data services, such as video-on-demand, are getting increasingly more popular, and they are expected to account for more than 80% of all Internet traffic in 2020. In this context, it is important for streaming service providers to detect deviations in service requests due to issues or changing end-user behaviors in order to ensure that end-users experience high quality in the provided service. Therefore, in this study we investigate to what extent sequence-based Markov models can be used for anomaly detection by means of the end-users’ control sequences in the video streams, i.e., event sequences such as play, pause, resume and stop. This anomaly detection approach is further investigated over three different temporal resolutions in the data, more specifically: 1 h, 1 day and 3 days. The proposed anomaly detection approach supports anomaly detection in ongoing streaming sessions as it recalculates the probability for a specific session to be anomalous for each new streaming control event that is received. Two experiments are used for measuring the potential of the approach, which gives promising results in terms of precision, recall, F 1 -score and Jaccard index when compared to k-means clustering of the sessions. © 2019, The Author(s).

sted, utgiver, år, opplag, sider
Springer London , 2019.
Emneord [en]
Anomaly detection, Event sequences, Markov Chains, Multiple temporal resolutions, Video-on-demand
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18026DOI: 10.1007/s10115-019-01365-yScopus ID: 2-s2.0-85066031197OAI: oai:DiVA.org:bth-18026DiVA, id: diva2:1324926
Tilgjengelig fra: 2019-06-14 Laget: 2019-06-14 Sist oppdatert: 2019-06-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Boldt, MartinBorg, Anton

Søk i DiVA

Av forfatter/redaktør
Boldt, MartinBorg, Anton
Av organisasjonen
I samme tidsskrift
Knowledge and Information Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 115 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf