Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Profiling of household residents’ electricity consumption behavior using clustering analysis
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.ORCID-id: 0000-0003-3128-191x
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.ORCID-id: 0000-0001-9947-1088
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
2019 (Engelska)Ingår i: Lect. Notes Comput. Sci., Springer Verlag , 2019, s. 779-786Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this study we apply clustering techniques for analyzing and understanding households’ electricity consumption data. The knowledge extracted by this analysis is used to create a model of normal electricity consumption behavior for each particular household. Initially, the household’s electricity consumption data are partitioned into a number of clusters with similar daily electricity consumption profiles. The centroids of the generated clusters can be considered as representative signatures of a household’s electricity consumption behavior. The proposed approach is evaluated by conducting a number of experiments on electricity consumption data of ten selected households. The obtained results show that the proposed approach is suitable for data organizing and understanding, and can be applied for modeling electricity consumption behavior on a household level. © Springer Nature Switzerland AG 2019.

Ort, förlag, år, upplaga, sidor
Springer Verlag , 2019. s. 779-786
Serie
Lecture Notes in Computer Science ; 11540
Nyckelord [en]
Ambient Assisted Living, Non-intrusive remote monitoring, Assisted living, Clustering analysis, Clustering techniques, Electricity-consumption, Household level, Number of clusters, Remote monitoring, Electric power utilization
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-18593DOI: 10.1007/978-3-030-22750-0_78Scopus ID: 2-s2.0-85068459816ISBN: 9783030227494 (tryckt)OAI: oai:DiVA.org:bth-18593DiVA, id: diva2:1349333
Konferens
International Conference on Computational Science, ICCS, Faro, Algarve, 12 June 2019 through 14 June 2019
Tillgänglig från: 2019-09-09 Skapad: 2019-09-09 Senast uppdaterad: 2019-10-17Bibliografiskt granskad
Ingår i avhandling
1. Data-Driven Techniques for Modeling and Analysis of User Behavior
Öppna denna publikation i ny flik eller fönster >>Data-Driven Techniques for Modeling and Analysis of User Behavior
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Our society is becoming more digitalized for each day. Now, we are able to gather data from individual users with higher resolution than ever. With the increased amount of data on an individual user level, we can analyze their behavior. This is of interest in many different domains, for example service providers wanting to improve their service for their customers. If they know how their service is used, they have more insight in how they can improve. But, it also imposes additional difficulties. When we reach the individual user, the irregularities in the regular behavior makes it harder to model the normal behavior.

In this thesis, we explore data-driven techniques to model and analyze user behaviors. We aim to evaluate existing as well as develop novel technologies to identify approaches that are suitable for use on an individual user level. We use both supervised and unsupervised learning methods to model the user behavior and evaluate the approaches on real world electricity consumption data.

Firstly, we analyze household electricity consumption data and investigate the use of regression to model the household's behavior. We identify consumption trends, how data granularity affects modeling, and we show that regression is a viable approach to model user behavior. Secondly, we use clustering analysis to profile individual households in terms of their electricity consumption. We compare two dissimilarity measures, how they affect the clustering analysis, and we investigate how the produced clustering solutions differ. Thirdly, we propose a sequential clustering algorithm to model evolving user behavior. We evaluate the proposed algorithm on electricity consumption data and show how the produced model can be used to identify and trace changes in the user's behavior. The algorithm is robust to evolving behaviors and handles both dynamic and incremental aspects of streaming data.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2019
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 15
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:bth-18667 (URN)978-91-7295-391-8 (ISBN)
Handledare
Tillgänglig från: 2019-11-15 Skapad: 2019-09-18 Senast uppdaterad: 2019-12-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Nordahl, ChristianBoeva, VeselkaGrahn, HåkanNetz Persson, Marie

Sök vidare i DiVA

Av författaren/redaktören
Nordahl, ChristianBoeva, VeselkaGrahn, HåkanNetz Persson, Marie
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 45 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf