Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling instantaneous quality of experience using machine learning of model trees
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för teknik och estetik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för teknik och estetik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för teknik och estetik.
2019 (Engelska)Ingår i: 2019 11th International Conference on Quality of Multimedia Experience, QoMEX 2019, Institute of Electrical and Electronics Engineers Inc. , 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

For service providers and operators, successful root cause analysis is essential for satisfactory service provisioning. However, reasons for sudden trend changes of the instantaneous Quality of Experience (QoE) may not always be immediately visible from underlying service- or network-level monitoring data. Thus, there is the challenge to pinpoint such moments of change in provisioning, and model the impact on instantaneous QoE, as a lead in root cause analysis. This work investigates the potential of Machine Learning (ML) of deriving time-interval-based models for instantaneous QoE ratings, obtained from a set of publicly available rating traces. In particular, the paper demonstrates the capability of the ML algorithm M5P to model trends of instantaneous QoE through model trees, consisting of piecewise linear functions over time. It is shown how and to which extent these functions can be used to estimate moments of change. Furthermore, the model trees support earlier assumptions about exponential shapes of instantaneous QoE over time as reactions to sudden changes of provisioning, such as video freezes. © 2019 IEEE.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2019.
Nyckelord [en]
M5P algorithm, Mean Opinion Score (MOS), Root cause analysis, Time dependency, Video freezes, Forestry, Machine learning, Multimedia systems, Piecewise linear techniques, Trees (mathematics), Mean opinion scores, Piece-wise linear functions, Quality of experience (QoE), Service provider, Service provisioning, Time interval, Quality of service
Nationell ämneskategori
Kommunikationssystem Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:bth-18604DOI: 10.1109/QoMEX.2019.8743250ISI: 000482562000035Scopus ID: 2-s2.0-85068689152ISBN: 9781538682128 (tryckt)OAI: oai:DiVA.org:bth-18604DiVA, id: diva2:1349786
Konferens
11th International Conference on Quality of Multimedia Experience, QoMEX, Berlin, 5 June 2019 through 7 June 2019
Tillgänglig från: 2019-09-10 Skapad: 2019-09-10 Senast uppdaterad: 2019-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Fiedler, Markus

Sök vidare i DiVA

Av författaren/redaktören
Fiedler, MarkusChapala, Usha KiranPeteti, Sridhar
Av organisationen
Institutionen för teknik och estetik
KommunikationssystemAnnan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 53 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf