Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the significant impact of concept drift in software defect prediction
City University of Hong Kong, CHN.
City University of Hong Kong, CHN.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för programvaruteknik.
City University of Hong Kong, CHN.
2019 (engelsk)Inngår i: Proceedings - International Computer Software and Applications Conference, IEEE Computer Society , 2019, s. 53-58Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Concept drift is a known phenomenon in software data analytics. It refers to the changes in the data distribution over time. The performance of analytic and prediction models degrades due to the changes in the data over time. To improve prediction performance, most studies propose that the prediction model be updated when concept drift occurs. In this work, we investigate the existence of concept drift and its associated effects on software defect prediction performance. We adopt the strategy of an empirically proven method DDM (Drift Detection Method) and evaluate its statistical significance using the chi-square test with Yates continuity correction. The objective is to empirically determine the concept drift and to calibrate the base model accordingly. The empirical study indicates that the concept drift occurs in software defect datasets, and its existence subsequently degrades the performance of prediction models. Two types of concept drifts (gradual and sudden drifts) were identified using the chi-square test with Yates continuity correction in the software defect datasets studied. We suggest concept drift should be considered by software quality assurance teams when building prediction models. © 2019 IEEE.

sted, utgiver, år, opplag, sider
IEEE Computer Society , 2019. s. 53-58
Emneord [en]
Concept drift detection, Defect prediction, Empirical software engineering, Software quality, Streaming data, Computer software selection and evaluation, Data Analytics, Defects, Forecasting, Quality assurance, Software testing, Statistical tests, Concept drifts, Application programs
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18761DOI: 10.1109/COMPSAC.2019.00017Scopus ID: 2-s2.0-85072713940ISBN: 9781728126074 (tryckt)OAI: oai:DiVA.org:bth-18761DiVA, id: diva2:1361813
Konferanse
43rd IEEE Annual Computer Software and Applications Conference, COMPSAC, 15 July 2019 through 19 July 2019
Tilgjengelig fra: 2019-10-17 Laget: 2019-10-17 Sist oppdatert: 2019-10-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Bennin, Kwabena Ebo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 9 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf