1617181920212219 of 24
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hom-Lie structures on 3-dimensional skew symmetric algebras
Mälardalens högskola, SWE.
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.ORCID iD: 0000-0003-3931-7358
Mälardalens högskola, SWE.
2019 (English)In: Journal of Physics: Conference Series, Institute of Physics Publishing (IOPP), 2019, Vol. 1416, p. 012025-Conference paper, Published paper (Refereed)
Abstract [en]

We describe the dimension of the space of possible linear endomorphisms that turn skew-symmetric three-dimensional algebras into Hom-Lie algebras. We find a correspondence between the rank of a matrix containing the structure constants of the bilinear product and the dimension of the space of Hom-Lie structures. Examples from classical complex Lie algebras are given to demonstrate this correspondence.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019. Vol. 1416, p. 012025-
Series
Journal of Physics:Conference Series, ISSN 1742-6596 ; 1416
Keywords [en]
Hom-Lie algebras
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:bth-19022DOI: 10.1088/1742-6596/1416/1/012025OAI: oai:DiVA.org:bth-19022DiVA, id: diva2:1379925
Conference
XXVI International Conference on Integrable Systems and Quantum symmetries 8–12 July 2019, Prague, Czech Republic
Note

open access

Available from: 2019-12-17 Created: 2019-12-17 Last updated: 2020-01-09Bibliographically approved

Open Access in DiVA

Hom-Lie structures on 3-dimensional skew symmetric algebras(573 kB)6 downloads
File information
File name FULLTEXT01.pdfFile size 573 kBChecksum SHA-512
248bf7dc929668c769239a5ae801c45ecb1cb458fe4f0a06289218265c728744795a74ffe9976f33d89349c220ce07a319cd46e6958ddf0527929ca34a703c9d
Type fulltextMimetype application/pdf

Other links

Publisher's full texthttps://iopscience.iop.org/article/10.1088/1742-6596/1416/1/012025

Authority records BETA

Richter, Johan

Search in DiVA

By author/editor
Richter, Johan
By organisation
Department of Mathematics and Natural Sciences
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar
Total: 6 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
1617181920212219 of 24
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf