CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SECONDARY CHARACTERISTIC CLASSES OF LIE ALGEBRA EXTENSIONS
Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences. Blekinge Tekniska Hgsk, Karlskrona, Sweden..
2019 (English)In: Bulletin de la Société Mathématique de France, ISSN 0037-9484, E-ISSN 2102-622X, Vol. 147, no 3, p. 443-453Article in journal (Refereed) Published
Abstract [en]

We introduce the notion of secondary characteristic classes of Lie algebra extensions. As an application of our construction we obtain a new proof of Lecomte's generalization of the Chern-Weil homomorphism.

Place, publisher, year, edition, pages
FRENCH MATHEMATICAL SOC , 2019. Vol. 147, no 3, p. 443-453
Keywords [en]
secondary characteristic class, Lie algebra extension
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:bth-19031DOI: 10.24033/bsmf.2788ISI: 000492745100004OAI: oai:DiVA.org:bth-19031DiVA, id: diva2:1380242
Funder
Carl Tryggers foundation , CTS16:540
Note

open access

Available from: 2019-12-18 Created: 2019-12-18 Last updated: 2019-12-27Bibliographically approved

Open Access in DiVA

fulltext(297 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 297 kBChecksum SHA-512
58f3375e7a21fb7f22953388073e165104044e02e4eda93d78d29fd59a9293088289866da108271d782539a6200cb982f119817119502aad4bee99952a7a2e2d
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Wagner, Stefan

Search in DiVA

By author/editor
Wagner, Stefan
By organisation
Department of Mathematics and Natural Sciences
In the same journal
Bulletin de la Société Mathématique de France
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf