Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Context-Aware Edge-Based AI Models for Wireless Sensor Networks-An Overview
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.ORCID iD: 0000-0001-6061-0861
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.ORCID iD: 0000-0003-3128-191x
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.ORCID iD: 0000-0002-3118-5058
Sony, R&D Center Europe, SWE.
2022 (English)In: Sensors, E-ISSN 1424-8220, Vol. 22, no 15, article id 5544Article, review/survey (Refereed) Published
Abstract [en]

Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing accurate conclusions with better understanding of the situation. Integration of the two areas WSN and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for smart sensing applications. In this paper, a comprehensive overview of the latest developments in context-aware intelligent systems using sensor technology is provided. In addition, it also discusses the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps. Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant subjects. The latter specifically identifies eleven main research topics supported by the articles included in the work. These are analyzed from various angles to answer five main research questions. Finally, potential future research directions are also discussed.

Place, publisher, year, edition, pages
MDPI, 2022. Vol. 22, no 15, article id 5544
Keywords [en]
artificial intelligence, context-awareness, edge computing, wireless sensor network, computer network, human, wireless communication, Computer Communication Networks, Humans, Wireless Technology
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-23537DOI: 10.3390/s22155544ISI: 000839768900001Scopus ID: 2-s2.0-85135202158OAI: oai:DiVA.org:bth-23537DiVA, id: diva2:1687050
Note

open access

Available from: 2022-08-12 Created: 2022-08-12 Last updated: 2024-04-05Bibliographically approved
In thesis
1. Resource-Aware and Personalized Federated Learning via Clustering Analysis
Open this publication in new window or tab >>Resource-Aware and Personalized Federated Learning via Clustering Analysis
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today’s advancement in Artificial Intelligence (AI) enables training Machine Learning (ML) models on the daily-produced data by connected edge devices. To make the most of the data stored on the device, conventional ML approaches require gathering all individual data sets and transferring them to a central location to train a common model. However, centralizing data incurs significant costs related to communication, network resource utilization, high volume of traffic, and privacy issues. To address the aforementioned challenges, Federated Learning (FL) is employed as a novel approach to train a shared model on decentralized edge devices while preserving privacy. Despite the significant potential of FL, it still requires considerable resources such as time, computational power, energy, and bandwidth availability. More importantly, the computational capabilities of the training devices may vary over time. Furthermore, the devices involved in the training process of FL may have distinct training datasets that differ in terms of their size and distribution. As a result of this, the convergence of the FL models may become unstable and slow. These differences can influence the FL process and ultimately lead to suboptimal model performance within a heterogeneous federated network.

In this thesis, we have tackled several of the aforementioned challenges. Initially, a FL algorithm is proposed that utilizes cluster analysis to address the problem of communication overhead. This issue poses a major bottleneck in FL, particularly for complex models, large-scale applications, and frequent updates. The next research conducted in this thesis involved extending the previous study to include wireless networks (WNs). In WSNs, achieving energy-efficient transmission is a significant challenge due to their limited resources. This has motivated us to continue with a comprehensive overview and classification of the latest advancements in context-aware edge-based AI models, with a specific emphasis on sensor networks. The review has also investigated the associated challenges and motivations for adopting AI techniques, along with an evaluation of current areas of research that need further investigation. To optimize the aggregation of the FL model and alleviate communication expenses, the initial study addressing communication overhead is extended to include a FL-based cluster optimization approach. Furthermore, to reduce the detrimental effect caused by data heterogeneity among edge devices on FL, a new study of group-personalized FL models has been conducted. Finally, taking inspiration from the previously mentioned FL models, techniques for assessing clients' contribution by monitoring and evaluating their behavior during training are proposed. In comparison with the most existing contribution evaluation solutions, the proposed techniques do not require significant computational resources.

The FL algorithms presented in this thesis are assessed on a range of real-world datasets. The extensive experiments demonstrated that the proposed FL techniques are effective and robust. These techniques improve communication efficiency, resource utilization, model convergence speed, and aggregation efficiency, and also reduce data heterogeneity when compared to other state-of-the-art methods.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2024. p. 260
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2024:04
Keywords
Federated Learning, Clustering Analysis, Eccentricity Analysis, Non- IID Data, Model Personalization
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:bth-26081 (URN)978-91-7295-478-6 (ISBN)
Public defence
2024-05-17, C413A, Karlskrona, 10:00 (English)
Opponent
Supervisors
Available from: 2024-04-05 Created: 2024-04-05 Last updated: 2024-04-22Bibliographically approved

Open Access in DiVA

fulltext(3146 kB)375 downloads
File information
File name FULLTEXT01.pdfFile size 3146 kBChecksum SHA-512
c920229f712b11f4993eed780e8803391fe71f2e463b863dde49253ba60584eb33e4b8714fc013dd0f033b907af58d1c2cc60b6c023956d7cf4cf83b12ef3205
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Al-Saedi, Ahmed Abbas MohsinBoeva, VeselkaCasalicchio, Emiliano

Search in DiVA

By author/editor
Al-Saedi, Ahmed Abbas MohsinBoeva, VeselkaCasalicchio, Emiliano
By organisation
Department of Computer Science
In the same journal
Sensors
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 376 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 604 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf