Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic creation of acceptance tests by extracting conditionals from requirements: NLP approach and case study
Netlight Consulting GmbH, DEU.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för programvaruteknik.ORCID-id: 0000-0003-3995-6125
University of Cologne, DEU.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för programvaruteknik.ORCID-id: 0000-0003-0619-6027
Vise andre og tillknytning
2023 (engelsk)Inngår i: Journal of Systems and Software, ISSN 0164-1212, E-ISSN 1873-1228, Vol. 197, artikkel-id 111549Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Acceptance testing is crucial to determine whether a system fulfills end-user requirements. However, the creation of acceptance tests is a laborious task entailing two major challenges: (1) practitioners need to determine the right set of test cases that fully covers a requirement, and (2) they need to create test cases manually due to insufficient tool support. Existing approaches for automatically deriving test cases require semi-formal or even formal notations of requirements, though unrestricted natural language is prevalent in practice. In this paper, we present our tool-supported approach CiRA (Conditionals in Requirements Artifacts) capable of creating the minimal set of required test cases from conditional statements in informal requirements. We demonstrate the feasibility of CiRA in a case study with three industry partners. In our study, out of 578 manually created test cases, 71.8% can be generated automatically. Additionally, CiRA discovered 80 relevant test cases that were missed in manual test case design. CiRA is publicly available at www.cira.bth.se/demo/. © 2022

sted, utgiver, år, opplag, sider
Elsevier, 2023. Vol. 197, artikkel-id 111549
Emneord [en]
Acceptance testing, Automatic test case creation, Causality extraction, Natural language processing, Requirements engineering, Natural language processing systems, Software testing, Automatic creations, Case-studies, Language processing, Natural languages, Requirement engineering, Test case, Acceptance tests
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-24047DOI: 10.1016/j.jss.2022.111549ISI: 000926985500008Scopus ID: 2-s2.0-85142730522OAI: oai:DiVA.org:bth-24047DiVA, id: diva2:1718228
Ingår i projekt
SERT- Software Engineering ReThought, Knowledge Foundation
Forskningsfinansiär
Knowledge Foundation, 20180010Tilgjengelig fra: 2022-12-12 Laget: 2022-12-12 Sist oppdatert: 2023-03-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusarXiv.org

Person

Frattini, JulianMendez, DanielUnterkalmsteiner, Michael

Søk i DiVA

Av forfatter/redaktør
Frattini, JulianMendez, DanielUnterkalmsteiner, Michael
Av organisasjonen
I samme tidsskrift
Journal of Systems and Software

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 184 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf