Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Application of Artificial Intelligence (Artificial Neural Network) to Assess Credit Risk: A Predictive Model For Credit Card Scoring
Blekinge Tekniska Högskola, Sektionen för management.
Blekinge Tekniska Högskola, Sektionen för management.
Blekinge Tekniska Högskola, Sektionen för management.
2009 (engelsk)Independent thesis Advanced level (degree of Master (One Year))Oppgave
Abstract [en]

Credit Decisions are extremely vital for any type of financial institution because it can stimulate huge financial losses generated from defaulters. A number of banks use judgmental decisions, means credit analysts go through every application separately and other banks use credit scoring system or combination of both. Credit scoring system uses many types of statistical models. But recently, professionals started looking for alternative algorithms that can provide better accuracy regarding classification. Neural network can be a suitable alternative. It is apparent from the classification outcomes of this study that neural network gives slightly better results than discriminant analysis and logistic regression. It should be noted that it is not possible to draw a general conclusion that neural network holds better predictive ability than logistic regression and discriminant analysis, because this study covers only one dataset. Moreover, it is comprehensible that a “Bad Accepted” generates much higher costs than a “Good Rejected” and neural network acquires less amount of “Bad Accepted” than discriminant analysis and logistic regression. So, neural network achieves less cost of misclassification for the dataset used in this study. Furthermore, in the final section of this study, an optimization algorithm (Genetic Algorithm) is proposed in order to obtain better classification accuracy through the configurations of the neural network architecture. On the contrary, it is vital to note that the success of any predictive model largely depends on the predictor variables that are selected to use as the model inputs. But it is important to consider some points regarding predictor variables selection, for example, some specific variables are prohibited in some countries, variables all together should provide the highest predictive strength and variables may be judged through statistical analysis etc. This study also covers those concepts about input variables selection standards.

sted, utgiver, år, opplag, sider
2009. , s. 32
Emneord [en]
Credit Scoring, Variable Selection, Data Collection and Preparation, Discriminant Analysis, Logistic Regression, Neural Networks, Generic Algorithm, Managerial Implication
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-2099Lokal ID: oai:bth.se:arkivexFF848A6CE93D08F2C12575D40025EE96OAI: oai:DiVA.org:bth-2099DiVA, id: diva2:829365
Uppsök
Physics, Chemistry, Mathematics
Veileder
Tilgjengelig fra: 2015-04-22 Laget: 2009-06-13 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltekst(993 kB)2085 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 993 kBChecksum SHA-512
33d6076d64af00e82378687d6dbbafa6730f1d954afe5395b191a44f21e7baeeef09e1ac100db7862ae39772e527615761d17882285276b84b055cbc25c8061f
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 2085 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1520 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf