Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ON BITSTREAM FEATURES BASED PERCEPTUAL QUALITY ESTIMATION OF HEVC CODED VIDEOS
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2015 (engelsk)Independent thesis Advanced level (degree of Master (Two Years))OppgaveAlternativ tittel
English title (svensk)
Abstract [en]

ABSTRACT Context: High Efficiency Video Coding (HEVC) is a new video coding standard which combines high video quality with higher compression ratios. In order to fully use the potential of this standard, there should be created an appropriate coding tool (coder), which determines proper coding parameters to ensure the highest possible video quality while maintaining a specified bitrate. Objectives: This thesis aims at proposing a set of bitstream based features that can be used for perceptual quality estimation of HEVC encoded videos. To this purpose, we develop required computer programs capable of extracting these features from coded video files. The extracted features are used in an artificial neural network (ANN) based model to estimate video quality. Methods: To conduct our solution, we performed a profound analysis of the HEVC coding standard, and then we designed software that precisely retrieves all needed data from video files. The software was created in C# language in order to allow for the analysis of big sized XML files. The other programs were created in Matlab software. They contain file converters and ANN video quality predictor which perform prediction of quality values on the basis of extracted parameters values. Tests were performed on 560 sample video files. Results: ANN provided very good results in quality prediction. All experiments showed that for all tested quality metrics presents very good fit. The highest correlation coefficient R is for VIFP quality metric and is averagely equal to R= 0,992. Conclusions: Summarizing presented approach for extraction video parameters and quality prediction can be implemented in real experiments. Provided testing conditions allow to achieve for satisfying results.

sted, utgiver, år, opplag, sider
2015. , s. 55
Emneord [en]
Artificial Neural Network, Video Coding Standard, Video Quality Assessment, Video Quality Prediction.
Emneord [sv]
Master of Science Programme in Electrical Engineering with emphasis on Signal Processing /Masterprogram i Elektroteknik med inriktning mot signalbehandling
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-3674Lokal ID: oai:bth.se:arkivex51996E7A20DDBF57C1257E09007A58C4OAI: oai:DiVA.org:bth-3674DiVA, id: diva2:830985
Uppsök
Technology
Veileder
Tilgjengelig fra: 2015-04-22 Laget: 2015-03-15 Sist oppdatert: 2015-06-30bibliografisk kontrollert

Open Access i DiVA

fulltekst(1431 kB)384 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1431 kBChecksum SHA-512
65ddb24a15607a7e5b839f092350cad94f9ae652cd9670caf1fd0989fb1eab38fcafc10fc50d69e74a54637b66dbb66f9723772abfa286bfd4d08fa1fd8573d3
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 384 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 215 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf