Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A No-Reference Bitstream-based Perceptual Model for Video Quality Estimation of Videos Affected by Coding Artifacts and Packet Losses
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2015 (engelsk)Inngår i: Proceedings of SPIE - The International Society for Optical Engineering, San Francisco: SPIE Press , 2015, Vol. 9394, s. Article number 93941F-Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this work, we propose a No-Reference (NR) bitstream-based model for predicting the quality of H.264/AVC video sequences, a effected by both compression artifacts and transmission impairments. The concept of the article is based on a feature extraction procedure, where a large number of features are calculated from the impaired bitstream. Many of the features are mostly proposed in this work, while the specific c set of the features as a whole is applied for the first time for making NR video quality predictions. All feature observations are taken as input to the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. LASSO indicates the most important features, and using only them, it is able to estimate the Mean Opinion Score (MOS) with high accuracy. Indicatively, we point out that only 13 features are able to produce a Pearson Correlation Coefficient of 0:92 with the MOS. Interestingly, the performance statistics we computed in order to assess our method for predicting the Structural Similarity Index and the Video Quality Metric are equally good. Thus, the obtained experimental results verifi ed the suitability of the features selected by LASSO as well as the ability of LASSO in making accurate predictions through sparse modeling.

sted, utgiver, år, opplag, sider
San Francisco: SPIE Press , 2015. Vol. 9394, s. Article number 93941F-
Emneord [en]
LASSO, MOS, No-Reference, packet loss, quality estimation.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-6401DOI: 10.1117/12.2077709ISI: 000354081600044ISBN: 978-1628414844 (tryckt)OAI: oai:DiVA.org:bth-6401DiVA, id: diva2:833905
Konferanse
Human Vision and Electronic Imaging XX; San Francisco
Tilgjengelig fra: 2015-03-05 Laget: 2015-03-04 Sist oppdatert: 2016-01-18bibliografisk kontrollert

Open Access i DiVA

fulltext(273 kB)226 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 273 kBChecksum SHA-512
3e5f51174017593cc57d3ecdd4f666470ff0b7a59b1fc1ff91454bc0086b741fd9273cbc333e981d2316b2bcabb36759e77db475578b1658f3aa0954e91efada
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Shahid, MuhammadLövström, Benny

Søk i DiVA

Av forfatter/redaktør
Shahid, MuhammadLövström, Benny
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 226 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf