Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Descriptive and Predictive Models for Serial Crime Analysis
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-8929-7220
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Law enforcement agencies regularly collect crime scene information. There exists, however, no detailed, systematic procedure for this. The data collected is affected by the experience or current condition of law enforcement officers. Consequently, the data collected might differ vastly between crime scenes. This is especially problematic when investigating volume crimes. Law enforcement officers regularly do manual comparison on crimes based on the collected data. This is a time-consuming process; especially as the collected crime scene information might not always be comparable. The structuring of data and introduction of automatic comparison systems could benefit the investigation process. This thesis investigates descriptive and predictive models for automatic comparison of crime scene data with the purpose of aiding law enforcement investigations. The thesis first investigates predictive and descriptive methods, with a focus on data structuring, comparison, and evaluation of methods. The knowledge is then applied to the domain of crime scene analysis, with a focus on detecting serial residential burglaries. This thesis introduces a procedure for systematic collection of crime scene information. The thesis also investigates impact and relationship between crime scene characteristics and how to evaluate the descriptive model results. The results suggest that the use of descriptive and predictive models can provide feedback for crime scene analysis that allows a more effective use of law enforcement resources. Using descriptive models based on crime characteristics, including Modus Operandi, allows law enforcement agents to filter cases intelligently. Further, by estimating the link probability between cases, law enforcement agents can focus on cases with higher link likelihood. This would allow a more effective use of law enforcement resources, potentially allowing an increase in clear-up rates.

sted, utgiver, år, opplag, sider
Karlskrona: Blekinge Institute of Technology , 2014. , s. 193 p.
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 12
Emneord [en]
Machine learning, Linkage, Serial crime analysis, Decision support system
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-00597Lokal ID: oai:bth.se:forskinfo47EE0D455BA8888DC1257D4D0034F6C1ISBN: 978-91-7295-288-1 (tryckt)OAI: oai:DiVA.org:bth-00597DiVA, id: diva2:833995
Tilgjengelig fra: 2014-12-15 Laget: 2014-09-08 Sist oppdatert: 2018-05-23bibliografisk kontrollert

Open Access i DiVA

fulltekst(2149 kB)522 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2149 kBChecksum SHA-512
d4018ca6071620efa7cfb736e2a787e27f62ac7457049a2822f6f36516334508dc5184f0d415abc07ae78374ab3060e19ca2090208d5c376aa5764c58e149e3b
Type fulltextMimetype application/pdf

Personposter BETA

Borg, Anton

Søk i DiVA

Av forfatter/redaktør
Borg, Anton
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 522 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 749 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf