Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved concept drift handling in surgery prediction and other applications
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2015 (engelsk)Inngår i: Knowledge and Information Systems, ISSN 0219-1377, Vol. 44, nr 1, s. 177-196Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The article presents a new algorithm for handling concept drift: the Trigger-based Ensemble (TBE) is designed to handle concept drift in surgery prediction but it is shown to perform well for other classification problems as well. At the primary care, queries about the need for surgical treatment are referred to a surgeon specialist. At the secondary care, referrals are reviewed by a team of specialists. The possible outcomes of this review are that the referral: (i) is canceled, (ii) needs to be complemented, or (iii) is predicted to lead to surgery. In the third case, the referred patient is scheduled for an appointment with a surgeon specialist. This article focuses on the binary prediction of case three (surgery prediction). The guidelines for the referral and the review of the referral are changed due to, e.g., scientific developments and clinical practices. Existing decision support is based on the expert systems approach, which usually requires manual updates when changes in clinical practice occur. In order to automatically revise decision rules, the occurrence of concept drift (CD) must be detected and handled. The existing CD handling techniques are often specialized; it is challenging to develop a more generic technique that performs well regardless of CD type. Experiments are conducted to measure the impact of CD on prediction performance and to reduce CD impact. The experiments evaluate and compare TBE to three existing CD handling methods (AWE, Active Classifier, and Learn++) on one real-world dataset and one artificial dataset. TBA significantly outperforms the other algorithms on both datasets but is less accurate on noisy synthetic variations of the real-world dataset.

sted, utgiver, år, opplag, sider
Springer , 2015. Vol. 44, nr 1, s. 177-196
Emneord [en]
online learning, incremental learning, machine learning, concept drift, BigData@BTH
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-6694DOI: 10.1007/s10115-014-0756-9ISI: 000356297500008Lokal ID: oai:bth.se:forskinfo93F9CDEFE847C5E2C1257CED001F2DE7OAI: oai:DiVA.org:bth-6694DiVA, id: diva2:834225
Merknad

http://link.springer.com/article/10.1007%2Fs10115-014-0756-9

Tilgjengelig fra: 2014-06-05 Laget: 2014-06-04 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltext(664 kB)503 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 664 kBChecksum SHA-512
0b1bf8f5d50a6b227ac3fc8814c932a417fdce29fc3da3032695640e71a0bfc5c356b6c5eee7c407f41914d906203ee2697439cfaf68bdc935a92eff04910d0c
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Persson, MarieLavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Persson, MarieLavesson, Niklas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 514 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 707 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf