Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A method for evaluation of learning components
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
2014 (Engelska)Ingår i: Automated Software Engineering: An International Journal, ISSN 0928-8910, E-ISSN 1573-7535, Vol. 21, nr 1, s. 41-63Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Today, it is common to include machine learning components in software products. These components offer specific functionalities such as image recognition, time series analysis, and forecasting but may not satisfy the non-functional constraints of the software products. It is difficult to identify suitable learning algorithms for a particular task and software product because the non-functional requirements of the product affect algorithm suitability. A particular suitability evaluation may thus require the assessment of multiple criteria to analyse trade-offs between functional and non-functional requirements. For this purpose, we present a method for APPlication-Oriented Validation and Evaluation (APPrOVE). This method comprises four sequential steps that address the stated evaluation problem. The method provides a common ground for different stakeholders and enables a multi-expert and multi-criteria evaluation of machine learning algorithms prior to inclusion in software products. Essentially, the problem addressed in this article concerns how to choose the appropriate machine learning component for a particular software product.

Ort, förlag, år, upplaga, sidor
Springer , 2014. Vol. 21, nr 1, s. 41-63
Nyckelord [en]
Data mining, Evaluation, Machine learning
Nationell ämneskategori
Programvaruteknik
Identifikatorer
URN: urn:nbn:se:bth-6721DOI: 10.1007/s10515-013-0123-1ISI: 000330975100003Lokalt ID: oai:bth.se:forskinfo792D7BDAD181A4BEC1257B5F0034EE80OAI: oai:DiVA.org:bth-6721DiVA, id: diva2:834254
Tillgänglig från: 2014-04-23 Skapad: 2013-05-02 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

fulltext(162 kB)241 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 162 kBChecksumma SHA-512
9f1687853943c9f9ca3fd431d73743aef735d174d4207075e861a5c3e39be666b85486046353b5aeb4af7eb8315daa4d3b0f5c663f661ee7a4d90d178cc1c88b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Lavesson, Niklas

Sök vidare i DiVA

Av författaren/redaktören
Lavesson, Niklas
Av organisationen
Sektionen för datavetenskap och kommunikation
I samma tidskrift
Automated Software Engineering: An International Journal
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 241 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 169 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf