Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel plane extraction approach using supervised learning
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.ORCID-id: 0000-0003-4327-117X
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
2013 (Engelska)Ingår i: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 24, nr 6, s. 1229-1237Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a novel approach for the classification of planar surfaces in an unorganized point clouds. A feature-based planner surface detection method is proposed which classifies a point cloud data into planar and non-planar points by learning a classification model from an example set of planes. The algorithm performs segmentation of the scene by applying a graph partitioning approach with improved representation of association among graph nodes. The planarity estimation of the points in a scene segment is then achieved by classifying input points as planar points which satisfy planarity constraint imposed by the learned model. The resultant planes have potential application in solving simultaneous localization and mapping problem for navigation of an unmanned-air vehicle. The proposed method is validated on real and synthetic scenes. The real data consist of five datasets recorded by capturing three-dimensional(3D) point clouds when a RGBD camera is moved in five different indoor scenes. A set of synthetic 3D scenes are constructed containing planar and non-planar structures. The synthetic data are contaminated with Gaussian and random structure noise. The results of the empirical evaluation on both the real and the simulated data suggest that the method provides a generalized solution for plane detection even in the presence of the noise and non-planar objects in the scene. Furthermore, a comparative study has been performed between multiple plane extraction methods.

Ort, förlag, år, upplaga, sidor
Springer , 2013. Vol. 24, nr 6, s. 1229-1237
Nyckelord [en]
Autonomous navigation, Planar surfaces, Point cloud, UAV navigation
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-6899DOI: 10.1007/s00138-013-0482-4ISI: 000321871600009Lokalt ID: oai:bth.se:forskinfo00C017285ADB1573C1257B2F00380EDFOAI: oai:DiVA.org:bth-6899DiVA, id: diva2:834453
Tillgänglig från: 2013-09-10 Skapad: 2013-03-15 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Siddiqui, RafidSiamak, KhatibiLindley, Craig

Sök vidare i DiVA

Av författaren/redaktören
Siddiqui, RafidSiamak, KhatibiLindley, Craig
Av organisationen
Sektionen för datavetenskap och kommunikation
I samma tidskrift
Machine Vision and Applications
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 128 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf