Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Hybrid Computational Method for the Identification of Cell Cycle-regulated Genes
Ansvarig organisation
2010 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat) Published
Abstract [en]

Gene expression microarrays are the most commonly available source of high-throughput biological data. They have been widely employed in recent years for the definition of cell cycle regulated (or periodically expressed) subsets of the genome in a number of different organisms. These have driven the development of various computational methods for identifying periodical expressed genes. However, the agreement is remarkably poor when different computational methods are applied to the same data. In view of this, we are motivated to propose herein a hybrid computational method targeting the identification of periodically expressed genes, which is based on a hybrid aggregation of estimations, generated by different computational methods. The proposed hybrid method is benchmarked against three other computational methods for the identification of periodically expressed genes: statistical tests for regulation and periodicity and a combined test for regulation and periodicity. The hybrid method is shown, together with the combined test, to statistically significantly outperform the statistical test for periodicity. However, the hybrid method is also demonstrated to be significantly better than the combined test for regulation and periodicity.

Ort, förlag, år, upplaga, sidor
London: IEEE press , 2010.
Nyckelord [en]
computational method, cell cycle-regulated genes, P-value for regulation, P-value for periodicity, hybrid aggregation
Nationell ämneskategori
Matematik Datavetenskap (datalogi) Medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:bth-7757Lokalt ID: oai:bth.se:forskinfo882864BB2A89694DC12577640039473EISBN: 978-1-4244-5164-7 (tryckt)OAI: oai:DiVA.org:bth-7757DiVA, id: diva2:835418
Konferens
IEEE Intelligent Systems
Tillgänglig från: 2012-09-18 Skapad: 2010-07-18 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

fulltext(784 kB)271 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 784 kBChecksumma SHA-512
4a83ce593be9f80b1da54232155b8cd28c75586b07ee31edd43031f65ddcc1842783c71fc1683d5ff00f6b49fccc5f680a5e54dd4bb74b99386168ea43047afa
Typ fulltextMimetyp application/pdf

Personposter BETA

Lavesson, Niklas

Sök vidare i DiVA

Av författaren/redaktören
Lavesson, Niklas
MatematikDatavetenskap (datalogi)Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 271 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 525 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf