Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Macrocell Path Loss Prediction Using Artificial Neural Networks
Ansvarig organisation
2010 (Engelska)Ingår i: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 59, nr 6, s. 2735-2747Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents and evaluates artificial neural network models used for macrocell path loss prediction. Measurement data obtained by utilising the IS-95 pilot signal from a commercial code division multiple access mobile network in rural Australia is used to train and evaluate the models. A simple neuron model and feed-forward networks with different number of hidden layers and neurons are evaluated regarding their training time, prediction accuracy, and generalisation properties. Also, different backpropagation training algorithms, such as gradient descent and LevenbergMarquardt, are evaluated. The artificial neural network inputs are chosen to be distance to base station, parameters easily obtained from terrain path profiles, land usage and vegetation type and density near the receiving antenna. The path loss prediction results obtained by using the artificial neural network models are evaluated against different versions of the semi-terrain based propagation model Recommendation ITU-R P.1546 and the OkumuraHata model. The statistical analysis shows that a non-complex artificial neural network model performs very well compared to traditional propagation models in regards to prediction accuracy, complexity and prediction time. The average ANN prediction results were: 1) maximum error: 22 dB, 2) mean error: 0 dB and 3) standard deviation: 7 dB. A multi-layered feed-forward network trained using the standard backpropagation algorithm was compared with a neuron model trained using the LevenbergMarquardt algorithm. It was found that the training time decreases from 150 , 000 to 10 iterations whilst the prediction accuracy is maintained.

Ort, förlag, år, upplaga, sidor
IEEE , 2010. Vol. 59, nr 6, s. 2735-2747
Nyckelord [en]
Okumura Hata model, Path loss prediction, Recommendation ITU-R P.1546, artificial neural network, backpropagation, feed-forward network, field strength measurements, point-to-area
Nationell ämneskategori
Telekommunikation Signalbehandling
Identifikatorer
URN: urn:nbn:se:bth-7823DOI: 10.1109/TVT.2010.2050502ISI: 000282025900010Lokalt ID: oai:bth.se:forskinfoC19934F14DA90DBAC125772C004CFE3COAI: oai:DiVA.org:bth-7823DiVA, id: diva2:835485
Tillgänglig från: 2012-09-18 Skapad: 2010-05-23 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

fulltext(1085 kB)199 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1085 kBChecksumma SHA-512
57c929a2d95f75be0faaa33732b243e209d1aca509fe08b0060c48010dc37beaf8e92c4a90815c1479b6be2f11d389f791868221d97ecb76c344214f5dca36e3
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Zepernick, Hans-Jürgen

Sök vidare i DiVA

Av författaren/redaktören
Zepernick, Hans-Jürgen
I samma tidskrift
IEEE Transactions on Vehicular Technology
TelekommunikationSignalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 199 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 167 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf