Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the classical and quantum evolution of Lagrangian half-forms in phase space
Ansvarlig organisasjon
1999 (engelsk)Inngår i: ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, ISSN 0246-0211, s. 547-573Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The local expressions of a Lagrangian half-form on a quantized Lagrangian submanifold of phase space are the wavefunctions of quantum mechanics. We show that one recovers Maslov's asymptotic formula for the solutions to Schrodinger's equation if one transports these half-forms by the flow associated with a Hamiltonian H. We then consider the case when the Hamiltonian flow is replaced by the flow associated with the Bohmian, and are led to the conclusion that the use of Lagrangian half-forms leads to a quantum mechanics on phase space. (C) Elsevier, Paris.

sted, utgiver, år, opplag, sider
PARIS: GAUTHIER-VILLARS/EDITIONS ELSEVIER , 1999. s. 547-573
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-8143ISI: 000081314300003Lokal ID: oai:bth.se:forskinfoB5A383822077AACFC12575B0002121FBOAI: oai:DiVA.org:bth-8143DiVA, id: diva2:835832
Tilgjengelig fra: 2012-09-18 Laget: 2009-05-08 Sist oppdatert: 2015-06-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 136 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf