Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved Adaptive Fingerprint Binarization
Ansvarig organisation
2008 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat) Published
Abstract [en]

In this paper improvements to a previous work are presented. Removing the redundant artifacts in the fingerprint mask is introduced enhancing the final result. The proposed method is entirely adaptive process adjusting to each fingerprint without any further supervision of the user. Hence, the algorithm is insensitive to the characteristics of the fingerprint sensor and the various physical appearances of the fingerprints. Further, a detailed description of fingerprint mask generation not fully described in the previous work is presented. The improved experimental results are presented.

Ort, förlag, år, upplaga, sidor
Sanya, China: IEEE , 2008.
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:bth-8315ISI: 000258873900156Lokalt ID: oai:bth.se:forskinfo83728357C8048F5BC125751900393345OAI: oai:DiVA.org:bth-8315DiVA, id: diva2:836022
Konferens
CISP
Tillgänglig från: 2012-09-18 Skapad: 2008-12-08 Senast uppdaterad: 2015-12-11Bibliografiskt granskad
Ingår i avhandling
1. FINGERPRINT IMAGE ENHANCEMENT, SEGMENTATION AND MINUTIAE DETECTION
Öppna denna publikation i ny flik eller fönster >>FINGERPRINT IMAGE ENHANCEMENT, SEGMENTATION AND MINUTIAE DETECTION
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Prior to 1960's, the fingerprint analysis was carried out manually by human experts and for forensic purposes only. Automated fingerprint identification systems (AFIS) have been developed during the last 50 years. The success of AFIS resulted in that its use expanded beyond forensic applications and became common also in civilian applications. Mobile phones and computers equipped with fingerprint sensing devices for fingerprint-based user identification are common today.

Despite the intense development efforts, a major problem in automatic fingerprint identification is to acquire reliable matching features from fingerprint images with poor quality. Images where the fingerprint pattern is heavily degraded usually inhibit the performance of an AFIS system. The performance of AFIS systems is also reduced when matching fingerprints of individuals with large age variations.

This doctoral thesis presents contributions within the field of fingerprint image enhancement, segmentation and minutiae detection. The reliability of the extracted fingerprint features is highly dependent on the quality of the obtained fingerprints. Unfortunately, it is not always possible to have access to high quality fingerprints. Therefore, prior to the feature extraction, an enhancement of the quality of fingerprints and a segmentation are performed. The segmentation separates the fingerprint pattern from the background and thus limits possible sources of error due to, for instance, feature outliers. Most enhancement and segmentation techniques are data-driven and therefore based on certain features extracted from the low quality fingerprints at hand. Hence, different types of processing, such as directional filtering, are employed for the enhancement. This thesis contributes by proposing new research both for improving fingerprint matching and for the required pre-processing that improves the extraction of features to be used in fingerprint matching systems.

In particular, the majority of enhancement and segmentation methods proposed herein are adaptive to the characteristics of each fingerprint image. Thus, the methods are insensitive towards sensor and fingerprint variability. Furthermore, introduction of the higher order statistics (kurtosis) for fingerprint segmentation is presented. Segmentation of the fingerprint image reduces the computational load by excluding background regions of the fingerprint image from being further processed. Also using a neural network to obtain a more robust minutiae detector with a patch rejection mechanism for speeding up the minutiae detection is presented in this thesis.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2016. s. 168
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2016:01
Nyckelord
adaptive fingerprint image enhancement, fingerprint segmentation, gray-scale image normalization, minutiae features, neural networks, frequency analysis, kurtosis
Nationell ämneskategori
Teknik och teknologier Signalbehandling
Identifikatorer
urn:nbn:se:bth-11149 (URN)978-91-7295-321-5 (ISBN)
Disputation
2016-02-18, J1620, Karlskrona, 13:00 (Engelska)
Handledare
Tillgänglig från: 2015-12-11 Skapad: 2015-12-10 Senast uppdaterad: 2016-04-13Bibliografiskt granskad

Open Access i DiVA

fulltext(472 kB)181 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 472 kBChecksumma SHA-512
2906c4eca4a6d2ae962f76e1b5ef31264a7341e25144f7290c70c4c536bdfac2fd6f16982f41c14278bc2f3e570a29d24905dd96aa5f6fc426fd740cecf873a9
Typ fulltextMimetyp application/pdf

Personposter BETA

Nilsson, MikaelClaesson, Ingvar

Sök vidare i DiVA

Av författaren/redaktören
Nilsson, MikaelClaesson, Ingvar
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 181 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 245 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf