Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. II.
Ansvarig organisation
2008 (Engelska)Ingår i: Communications in nonlinear science & numerical simulation, ISSN 1007-5704, E-ISSN 1878-7274, Vol. 13, nr 6, s. 1015-1020Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The second-order ordinary differential equations can have one, two, three or eight independent symmetries. Sophus Lie showed that the equations with eight symmetries and only these equations can be linearized by a change of variables. Moreover he demonstrated that these equations are at most cubic in the first derivative and gave a convenient invariant description of all linearizable equations. We provide a similar description of the equations with three symmetries. There are four different types of such equations. Classes of equations belonging to one of these types were studied in N.H. Ibragimov and S.V. Meleshko, Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. I, Communications in Nonlinear Science and Numerical Simulation, Vol. 12, No. 8, 2007, pp. 1370--1378. Namely, we presented there the candidates for all four types and studied one of these candidates.The present paper is devoted to other three candidates.

Ort, förlag, år, upplaga, sidor
The Netherlands: ELSEVIER SCIENCE BV , 2008. Vol. 13, nr 6, s. 1015-1020
Nyckelord [en]
Invariants, second-order ODEs, infinitesimal symmetries
Nationell ämneskategori
Matematisk analys
Identifikatorer
URN: urn:nbn:se:bth-8838DOI: 10.1016/j.cnsns.2006.03.011ISI: 000254602300001Lokalt ID: oai:bth.se:forskinfo2640DD4C9DFE3D67C12573BE00713C35OAI: oai:DiVA.org:bth-8838DiVA, id: diva2:836593
Tillgänglig från: 2012-09-18 Skapad: 2007-12-27 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext
I samma tidskrift
Communications in nonlinear science & numerical simulation
Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 64 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf