Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. I
Ansvarig organisation
2007 (Engelska)Ingår i: Communications in nonlinear science & numerical simulation, ISSN 1007-5704, E-ISSN 1878-7274, Vol. 12, nr 8, s. 1370-1378Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Lie's group classification of ODEs shows that the second-order equations can possess one, two, three or eight infinitesimal symmetries. The equations with eight symmetries and only these equations can be linearized by a change of variables. Lie showed that the latter equations are at most cubic in the first derivative and gave a convenient invariant description of all linearizable equations. Our aim is to provide a similar description of the equations with three symmetries. There are four different types of such equations. We present here the candidates for all four types. We give an invariant test for existence of three symmetries for one of these candidates.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier , 2007. Vol. 12, nr 8, s. 1370-1378
Nyckelord [en]
Invariants, Lie group analysis
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:bth-8994Lokalt ID: oai:bth.se:forskinfo9FF2C8283E43F651C125733E00475054OAI: oai:DiVA.org:bth-8994DiVA, id: diva2:836770
Tillgänglig från: 2012-09-18 Skapad: 2007-08-21 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

I samma tidskrift
Communications in nonlinear science & numerical simulation
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 36 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf