Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy Efficiency in Data Stream Mining
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0001-9947-1088
2015 (engelsk)Inngår i: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2015, s. 1125-1132Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

Data mining algorithms are usually designed to optimize a trade-off between predictive accuracy and computational efficiency. This paper introduces energy consumption and energy efficiency as important factors to consider during data mining algorithm analysis and evaluation. We extended the CRISP (Cross Industry Standard Process for Data Mining) framework to include energy consumption analysis. Based on this framework, we conducted an experiment to illustrate how energy consumption and accuracy are affected when varying the parameters of the Very Fast Decision Tree (VFDT) algorithm. The results indicate that energy consumption can be reduced by up to 92.5% (557 J) while maintaining accuracy.

sted, utgiver, år, opplag, sider
2015. s. 1125-1132
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-11412DOI: 10.1145/2808797.2808863ISI: 000371793500173ISBN: 978-1-4503-3854-7 (tryckt)OAI: oai:DiVA.org:bth-11412DiVA, id: diva2:894248
Konferanse
Int’l Symp. on Foundations and Applications of Big Data Analytics (FAB 2015), Paris
Prosjekter
BigData@BTH - Scalable resource-efficient systems for big data analytics
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2016-01-14 Laget: 2016-01-14 Sist oppdatert: 2018-02-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://doi.acm.org/10.1145/2808797.2808863

Personposter BETA

García Martín, EvaLavesson, NiklasGrahn, Håkan

Søk i DiVA

Av forfatter/redaktør
García Martín, EvaLavesson, NiklasGrahn, Håkan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 266 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf