Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A mixture-of-experts approach for gene regulatory network inference
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2016 (engelsk)Inngår i: INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, ISSN 1748-5673, Vol. 14, nr 3, s. 258-275Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Gene regulatory network (GRN) inference is an important problem in bioinformatics. Many machine learning methods have been applied to increase the inference accuracy. Ensemble learning methods are shown in DREAM3 and DREAM5 challenges to yield a higher inference accuracy than individual algorithms. However, no ensemble method has been proposed to take advantage of the complementarity among existing algorithms from the perspective of network motifs. We propose an ensemble method based on the principle of Mixture-of-Experts ensemble learning. The method can quantitatively evaluate the accuracy of individual algorithms on predicting each type of the network motifs and assign weights to the algorithms accordingly. The individual predictions are then used to generate the ensemble prediction. By performing controlled experiments and statistical tests, the proposed ensemble method is shown to yield a significantly higher accuracy than the generic average ranking method used in the DREAM5 challenge. In addition, a new type of network motif is found in GRN, the inclusion of which can increase the accuracy of the proposed method significantly.

sted, utgiver, år, opplag, sider
InderScience Publishers, 2016. Vol. 14, nr 3, s. 258-275
Emneord [en]
GRN inference; ensemble learning; mixture-of-experts; network motif analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-11852DOI: 10.1504/IJDMB.2016.074876ISI: 000373392900004OAI: oai:DiVA.org:bth-11852DiVA, id: diva2:925522
Tilgjengelig fra: 2016-05-02 Laget: 2016-05-02 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Lavesson, NiklasBoeva, VeselkaShahzad, Raja Khurram

Søk i DiVA

Av forfatter/redaktør
Lavesson, NiklasBoeva, VeselkaShahzad, Raja Khurram
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf