Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
How to Make Best Use of Cross-Company Data for Web Effort Estimation?
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2015 (engelsk)Inngår i: 2015 ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT (ESEM), 2015, s. 172-181Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

[Context]: The numerous challenges that can hinder software companies from gathering their own data have motivated over the past 15 years research on the use of cross-company (CC) datasets for software effort prediction. Part of this research focused on Web effort prediction, given the large increase worldwide in the development of Web applications. Some of these studies indicate that it may be possible to achieve better performance using CC models if some strategy to make the CC data more similar to the within-company (WC) data is adopted. [Goal]: This study investigates the use of a recently proposed approach called Dycom to assess to what extent Web effort predictions obtained using CC datasets are effective in relation to the predictions obtained using WC data when explicitly mapping the CC models to the WC context. [Method]: Data on 125 Web projects from eight different companies part of the Tukutuku database were used to build prediction models. We benchmarked these models against baseline models (mean and median effort) and a WC base learner that does not benefit of the mapping. We also compared Dycom against a competitive CC approach from the literature (NN-filtering). We report a company-by-company analysis. [Results]: Dycom usually managed to achieve similar or better performance than a WC model while using only half of the WC training data. These results are also an improvement over previous studies that investigated the use of different strategies to adapt CC models to the WC data for Web effort estimation. [Conclusions]: We conclude that the use of Dycom for Web effort prediction is quite promising and in general supports previous results when applying Dycom to conventional software datasets.

sted, utgiver, år, opplag, sider
2015. s. 172-181
Serie
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ISSN 1938-6451
Emneord [en]
COST ESTIMATION; SOFTWARE; PREDICTION
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-12593ISI: 000376497300025ISBN: 978-1-4673-7899-4 (tryckt)OAI: oai:DiVA.org:bth-12593DiVA, id: diva2:941443
Konferanse
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), OCT 22-23, 2015, Beijing, PEOPLES R CHINA
Tilgjengelig fra: 2016-06-22 Laget: 2016-06-22 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Mendes, Emilia

Søk i DiVA

Av forfatter/redaktør
Mendes, Emilia
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 70 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf