Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Probability characteristics of nonlinear dynamical systems driven by delta -pulse noise
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för maskinteknik.
2016 (engelsk)Inngår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 93, nr 6, artikkel-id 062125Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

For a nonlinear dynamical system described by the first-order differential equation with Poisson white noise having exponentially distributed amplitudes of δ pulses, some exact results for the stationary probability density function are derived from the Kolmogorov-Feller equation using the inverse differential operator. Specifically, we examine the "effect of normalization" of non-Gaussian noise by a linear system and the steady-state probability density function of particle velocity in the medium with Coulomb friction. Next, the general formulas for the probability distribution of the system perturbed by a non-Poisson δ-pulse train are derived using an analysis of system trajectories between stimuli. As an example, overdamped particle motion in the bistable quadratic-cubic potential under the action of the periodic δ-pulse train is analyzed in detail. The probability density function and the mean value of the particle position together with average characteristics of the first switching time from one stable state to another are found in the framework of the fast relaxation approximation. © 2016 American Physical Society.

sted, utgiver, år, opplag, sider
American Physical Society , 2016. Vol. 93, nr 6, artikkel-id 062125
Emneord [en]
Differential equations; Dynamical systems; Gaussian noise (electronic); Linear systems; Mathematical operators; Nonlinear dynamical systems; Nonlinear equations; Poisson distribution; Poisson equation; Probability; Probability distributions; Velocity control; White noise, Differential operators; First order differential equation; Non-Gaussian noise; Overdamped particles; Particle velocities; Stationary probability density function; Steady state probabilities; System trajectory, Probability density function
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-12776DOI: 10.1103/PhysRevE.93.062125ISI: 000378057400001Scopus ID: 2-s2.0-84975260959OAI: oai:DiVA.org:bth-12776DiVA, id: diva2:944881
Tilgjengelig fra: 2016-06-30 Laget: 2016-06-30 Sist oppdatert: 2017-11-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Rudenko, Oleg

Søk i DiVA

Av forfatter/redaktør
Rudenko, Oleg
Av organisasjonen
I samme tidsskrift
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 337 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf