Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Displacement measurements versus time using a remote inclined plane laboratory
Blekinge Institute of Technology, Faculty of Engineering, Department of Applied Signal Processing.
Blekinge Institute of Technology, Faculty of Engineering, Department of Applied Signal Processing.
2016 (English)In: Proceedings of 2016 13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016, IEEE Press, 2016, p. 355-356Conference paper, Published paper (Refereed)
Abstract [en]

This paper describes a remote implementation of Galileos inclined plane experiment, focused on secondary school students. A remotely controlled inclined plane has been designed and implemented in the VISIR lab at Blekinge Institute of Technology (BTH), Sweden. In this demo session, it will be demonstrated how to perform measurements remotely in the remotely controlled Inclined Plane Laboratory. A web camera is used to show the experiment. Data concerning the distance a cube has slided down the inclined plane are collected. These data are stored in a file and can subsequently be analyzed by the students. The friction acting on the cube sliding down the inclined plane and its acceleration may for instance be investigated.

Place, publisher, year, edition, pages
IEEE Press, 2016. p. 355-356
Series
International Conference on Remote Engineering and Virtual Instrumentation, ISSN 2330-9997
Keywords [en]
Education; Experiments; Laboratories; Students, Inclined planes; Remote implementation; Remote-labs; Secondary schools; Web camera, Machinery
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:bth-13143DOI: 10.1109/REV.2016.7444501ISI: 000382146400072Scopus ID: 2-s2.0-84966526633ISBN: 978-146738246-5 (print)OAI: oai:DiVA.org:bth-13143DiVA, id: diva2:1016624
Conference
13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016; Madrid
Note

Conference of 13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016 ; Conference Date: 24 February 2016 Through 26 February 2016; Conference Code:121080

Available from: 2016-10-04 Created: 2016-10-03 Last updated: 2023-08-27Bibliographically approved
In thesis
1. Remote laboratories in STEM education: Strategies and methods for implementation
Open this publication in new window or tab >>Remote laboratories in STEM education: Strategies and methods for implementation
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During a substantial part of their time young people of today live in an online world. The medial evolution has also influenced education and today much research work concerns the transfer of the physical world into the online one. One example is laboratories in science, technology, engineering, and mathematics (STEM) education that are available in online rooms. They enable students to be at home in front of a computer and on-screen watch and operate the physical equipment in the laboratory at school. 

It is a general agreement that laboratory lessons are necessary in subjects such as physics, chemistry and biology. Physical experiments provide a great way for students to learn more about nature and its possibilities as well as limitations. Experimental work can be provided by laboratories in three different categories; 1) hands-on, 2) remote and 3) simulated.

This thesis addresses how to implement remote laboratories as a teaching methodology. It presents examples of upper secondary school students’ experimental work and their evaluation of remote laboratories regarding usability, sense of reality and technical problems. 

In order to gain a better understanding of the situation and needs regarding laboratory activities in an upper secondary school, eight physics teachers were interviewed at six different schools. Furthermore, 165 upper secondary school students answered a questionnaire survey regarding subject preferences, program choices, views on technology and self-ability, and their approach to technology and technology-related situations. This thesis also describes another education approach where academia, industry, and research institutes cooperate around the development and implementation of master level courses. The pedagogical approach utilized in these master level courses has been flipped classroom.

In this thesis, the usage of remotely controlled laboratories in physics education at an upper secondary school and a university are addressed. The main objective of this project is to investigate the feasibility of using the Virtual Instruments System in Reality (VISIR) technology for remotely controlled laboratories, developed at Blekinge Institute of Technology, in upper secondary schools. The laboratory setup can be shared and utilized almost 24/7, thus reducing the associated costs and eliminating time restrictions.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2023
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 12
Keywords
Education, Engineering, Experimental work, Physics, Remote Laboratories, VISIR
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Didactics Signal Processing
Research subject
Applied Signal Processing
Identifiers
urn:nbn:se:bth-25329 (URN)978-91-7295-464-9 (ISBN)
Public defence
2023-10-13, J1630, Blekinge Tekniska Högskola, 371 79 Karlskrona, Karlskrona, 09:15 (English)
Opponent
Supervisors
Available from: 2023-08-29 Created: 2023-08-27 Last updated: 2023-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Claesson, LenaHåkansson, Lars

Search in DiVA

By author/editor
Claesson, LenaHåkansson, Lars
By organisation
Department of Applied Signal Processing
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 302 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf