Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Finding Influential Users in Social Media Using Association Rule Learning
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.ORCID iD: 0000-0003-3219-9598
Wrocƚaw University of Technology, POL.ORCID iD: 0000-0002-6474-0089
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.ORCID iD: 0000-0002-8929-7220
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
2016 (English)In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300, Vol. 18, no 5Article in journal (Refereed) Published
Abstract [en]

Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI AG , 2016. Vol. 18, no 5
Keywords [en]
social media, data mining, association rule learning, prediction, social network analysis
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-13575DOI: 10.3390/e18050164ISI: 000377262900009OAI: oai:DiVA.org:bth-13575DiVA, id: diva2:1055339
Note

open access

Available from: 2016-12-12 Created: 2016-12-12 Last updated: 2018-01-13Bibliographically approved
In thesis
1. Human Interactions on Online Social Media: Collecting and Analyzing Social Interaction Networks
Open this publication in new window or tab >>Human Interactions on Online Social Media: Collecting and Analyzing Social Interaction Networks
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Online social media, such as Facebook, Twitter, and LinkedIn, provides users with services that enable them to interact both globally and instantly. The nature of social media interactions follows a constantly growing pattern that requires selection mechanisms to find and analyze interesting data. These interactions on social media can then be modeled into interaction networks, which enable network-based and graph-based methods to model and understand users’ behaviors on social media. These methods could also benefit the field of complex networks in terms of finding initial seeds in the information cascade model. This thesis aims to investigate how to efficiently collect user-generated content and interactions from online social media sites. A novel method for data collection that is using an exploratory research, which includes prototyping, is presented, as part of the research results in this thesis.

 

Analysis of social data requires data that covers all the interactions in a given domain, which has shown to be difficult to handle in previous work. An additional contribution from the research conducted is that a novel method of crawling that extracts all social interactions from Facebook is presented. Over the period of the last few years, we have collected 280 million posts from public pages on Facebook using this crawling method. The collected posts include 35 billion likes and 5 billion comments from 700 million users. The data collection is the largest research dataset of social interactions on Facebook, enabling further and more accurate research in the area of social network analysis.

 

With the extracted data, it is possible to illustrate interactions between different users that do not necessarily have to be connected. Methods using the same data to identify and cluster different opinions in online communities have also been developed and evaluated. Furthermore, a proposed method is used and validated for finding appropriate seeds for information cascade analyses, and identification of influential users. Based upon the conducted research, it appears that the data mining approach, association rule learning, can be used successfully in identifying influential users with high accuracy. In addition, the same method can also be used for identifying seeds in an information cascade setting, with no significant difference than other network-based methods. Finally, privacy-related consequences of posting online is an important area for users to consider. Therefore, mitigating privacy risks contributes to a secure environment and methods to protect user privacy are presented.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2018
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 1
Keywords
Social Media, Social Networks, Crawling, Complex Networks, Information Cascade, Seed Selection, Privacy
National Category
Computer Sciences
Identifiers
urn:nbn:se:bth-15503 (URN)978-91-7295-344-4 (ISBN)
Public defence
2017-01-15, J1650, Karlskrona, 13:00 (English)
Opponent
Supervisors
Available from: 2017-11-23 Created: 2017-11-15 Last updated: 2018-01-13

Open Access in DiVA

entropy-18-00164-v2(396 kB)127 downloads
File information
File name FULLTEXT01.pdfFile size 396 kBChecksum SHA-512
b1f2cdd107999a1fab1ef92766e8628c7a84e42cefe6384038135845cebaaf392a2deda25eeb23ac867ba32ddec6d449aa48f6b42791d63f41ca309de251ee47
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Erlandsson, FredrikBródka, PiotrBorg, AntonJohnson, Henric

Search in DiVA

By author/editor
Erlandsson, FredrikBródka, PiotrBorg, AntonJohnson, Henric
By organisation
Department of Computer Science and Engineering
In the same journal
Entropy
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 127 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 481 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf