Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-Label Classification Methods for Image Annotation
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2016.
Keyword [en]
Image annotation, Empirical study, Multi-label learning, classification, Machine Learning, Image Analysis.
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-13725OAI: oai:DiVA.org:bth-13725DiVA: diva2:1062353
Subject / course
DV2566 Master's Thesis (120 credits) in Computer Science
Educational program
DVACS Master of Science Programme in Computer Science
Available from: 2017-01-05 Created: 2017-01-05 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(455 kB)324 downloads
File information
File name FULLTEXT01.pdfFile size 455 kBChecksum SHA-512
c4f90ba3ffa23cb8974d015b0ebc42485431a21d0b18cef3f9f3181eb090520c878fd94885f3145f323c5cbffd79b8d641160860e30162fb320ee3db51add071
Type fulltextMimetype application/pdf

By organisation
Department of Computer Science and Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 324 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf