Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance evaluation of control algorithms implemented on a remotely controlled active noise control laboratory
Blekinge Institute of Technology, School of Engineering, Department of Electrical Engineering.
BTH.
Blekinge Institute of Technology, School of Engineering, Department of Electrical Engineering.
Show others and affiliations
2013 (English)In: Active Noise and Vibration Control in Practical System Implementations, 2013, 731Conference paper, (Other academic)
Abstract [en]

The remotely controlled laboratory setup for Active Noise Control (ANC) developed by Blekin-ge Institute of Technology, Sweden provides an efficient learning platform for the students to implement and learn ANC algorithms with real world physical system, hardware and signals. The initial laboratory prototype based on a Digital Signal Processor (DSP) TMS320C6713 from Texas Instruments (TI) was successfully tested with Filtered-x Least Mean Square (F-XLMS) algorithm applied to control noise in a ventilation duct. The resources of the DSP platform used in the remote laboratory setup enable testing and investigating substantially more challenging and computationally demanding algorithms. In this paper, we expand the horizon of the laboratory setup by testing more advanced and complicated single channel feed forward ANC algorithms. Filtered-x versions of algorithms such as the normalized least mean square (N-LMS), leaky least mean square (L-LMS), Filtered-U recursive least mean square (FURLMS) and recursive least square (RLS) algorithm etc. have been implemented utilizing the remote web based client provided in the remote laboratory. A comprehensive performance comparison of the aforementioned algorithms for the remote laboratory setup is presented to demonstrate the viability of the remote laboratory.

Place, publisher, year, edition, pages
2013. 731
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:bth-13809OAI: oai:DiVA.org:bth-13809DiVA: diva2:1067619
Conference
The 20th International Congress on Sound and Vibration (ICSV20).
Available from: 2017-01-22 Created: 2017-01-22 Last updated: 2017-01-31Bibliographically approved
In thesis
1. Measurements, Analysis Techniques and Experiments in Sound and Vibration: Applied to Operational MRI Scanners and in Remote Laboratories.
Open this publication in new window or tab >>Measurements, Analysis Techniques and Experiments in Sound and Vibration: Applied to Operational MRI Scanners and in Remote Laboratories.
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High quality noise and vibration measurements outside of a laboratory environment on real life structures and applications are not trivial. True boundary and operating conditions enforce unique challenges on the measurements. Measurements in hazardous situations such as high magnetic fields, and high temperature environments, etc., where ordinary measurement equipment and methods may not be employed, require further precautions. Post measurements objectives such as analysis, design and strategic decisions, e.g., control, rely heavily on the quality and integrity of the measurements (data).

The quality of the experimental data is highly correlated with the on-field expertise. Practical or hands-on experience with measurements can be imparted to prospective students, researchers and technicians in the form of laboratory experiments involving real equipment and practical applications. However, achieving expertise in the field of sound and vibration measurements in general and their active control in particular is a time consuming and expensive process. Consequently most institutions can only afford a single setup, resulting in the compromise of the quality of expertise.

In this thesis, the challenges in the field of sound and vibration measurements in high magnetic field are addressed. The analysis and measurement of vibration transferred from an operational magnetic resonance imaging (MRI) scanner to adjacent floors is taken as an example. Improvised experimental measurement methods and custom-made frequency analysis techniques are proposed in order to address the challenges and study the vibration transfer. The methods may be extended to other operational industrial machinery and hazardous environments. To encourage and develop expertise in the field of acoustic/vibration measurements and active noise control on practical test beds, remotely controlled laboratory setups are introduced. The developed laboratory setup, which is accessed and controlled via the Internet, is the first of its kind in the active noise control and acoustic measurements area. The laboratory setup can be shared and utilized 24/7 globally, thus reducing the associated costs and eliminating time restrictions.

Place, publisher, year, edition, pages
Blekinge Tekniska Högskola, 2017. 251 p.
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 3
Keyword
Active Noise Control, Remote Laboratories, Sound and Vibration Measurements, Vibration Analysis, Vibration Transmission
National Category
Signal Processing
Identifiers
urn:nbn:se:bth-13821 (URN)978-91-7295-336-9 (ISBN)
Public defence
2017-02-22, 10:00 (English)
Opponent
Supervisors
Available from: 2017-02-01 Created: 2017-01-24 Last updated: 2017-03-08Bibliographically approved

Open Access in DiVA

fulltext(408 kB)65 downloads
File information
File name FULLTEXT01.pdfFile size 408 kBChecksum SHA-512
13606ced90b5bfa4da2cd20976341b641dd05b35f7bc50220b09716b49e14945f6cf96484c8338b8a3bd41001514bedb14d1f71025391b08cb56f7c8edb50d98
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Khan, ImranJohansson, SvenHåkansson, Lars
By organisation
Department of Electrical Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 65 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf